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THREE EHRHART QUASI-POLYNOMIALS

V. BALDONI, N. BERLINE, J. A. DE LOERA, M. KÖPPE, AND M. VERGNE

Abstract. Let p(b) ⊂ Rd be a semi-rational parametric poly-
tope, where b = (bj) ∈ RN is a real multi-parameter. We study
intermediate sums of polynomial functions h(x) on p(b),

SL(p(b), h) =
∑

y

∫

p(b)∩(y+L)

h(x) dx,

where we integrate over the intersections of p(b) with the subspaces
parallel to a fixed rational subspace L through all lattice points,
and sum the integrals. The purely discrete sum is of course a
particular case.

The chambers are the open conical subsets of RN such that the
shape of p(b) does not change when b runs over a chamber. We
first prove that on every chamber of RN , SL(p(b), h) is given by
a quasi-polynomial function of b ∈ RN . A key point of our paper
is an analysis of the interplay between two notions of degree on
quasi-polynomials: the usual polynomial degree and a filtration,
called the local degree.

Then, for a fixed k ≤ d, we consider a particular linear combi-
nation of such intermediate weighted sums, which was introduced
by Barvinok in order to compute efficiently the k+1 highest coef-
ficients of the Ehrhart quasi-polynomial which gives the number of
points of a dilated rational polytope. Thus, for each chamber, we
obtain a quasi-polynomial function of b, which we call Barvinok’s
patched quasi-polynomial (at codimension level k).

Finally, for each chamber, we introduce a new quasi-polynomial
function of b, the cone-by-cone patched quasi-polynomial (at codi-
mension level k), defined in a refined way by linear combinations of
intermediate generating functions for the cones at vertices of p(b).

We prove that both patched quasi-polynomials agree with the
discrete weighted sum b 7→ S{0}(p(b), h) in the terms corresponding
to the k + 1 highest polynomial degrees.
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Figure 1. The parametric polytope p(b) from Example
2.8, for b in various chambers

1. Introduction

In this article, a parametric semi-rational polytope p(b) ⊂ Rd is de-
fined by inequalities:

p(b) =
{

x ∈ Rd : 〈µj, x〉 ≤ bj , j = 1, . . . , N
}

(1.1)

where µ1, µ2, . . . , µN are fixed linear forms with integer coefficients (the
case of rational µj can be treated by rescaling µj and b) and the param-
eter b = (b1, b2, . . . , bN) varies in RN . The shape of the polytope p(b)
varies when the parameter b varies (see Figure 1). Chambers τ ⊂ RN

are open convex polyhedral cones such that the shape of p(b) does not
change when b runs over τ (see Definition 2.12). We consider weighted
integrals and sums, where the weight is a polynomial function h(x) of
degree m on Rd.

I(p(b), h) =

∫

p(b)

h(x) dx, S(p(b), h) =
∑

x∈p(b)∩Zd

h(x).

When the weight is the constant 1, then I(p(b), 1) is the volume of p(b),
while S(p(b), 1) is the number of integral points in p(b).
Our interest in S(p(b), h) is motivated in part by the important ap-

plications in compiler optimization and automatic code parallelization,
in which multiple parameters arise naturally (see [12, 17, 18] and the
references within). In the unweighted case (h = 1), the study of the
counting function S(p(b), 1) includes the classical vector partition func-
tions [11] as a special case. Outside of this context, the literature has
often focused on the case of one-parameter families of dilations of a
single polytope (see section 1.1 for a discussion), with few exceptions
[14, 8, 13].
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The relations between the two functions I(p(b), h) and S(p(b), h) of
the parameter vector b have been the central theme of several works.
In this article, we (hope to) add a contribution to these questions.

1.1. Weighted Ehrhart quasi-polynomials and intermediate sums.
When a rational parameter vector b is fixed, then the polytope p = p(b)
is a rational polytope. If we dilate it by a non-negative number t, the
function t 7→ S(tp, h) is a quasi-polynomial function of t, i.e., it takes
the form

S(tp, h) = E(t) =

d+m
∑

j=0

Ej(t)t
j,

where the coefficients Ej(t) are periodic functions of t, rather than
constants. It is called the weighted Ehrhart quasi-polynomial of p. In
traditional Ehrhart theory, only non-negative integer dilation factors t
are considered, and so a coefficient function with period q ∈ Z>0 can be
given as a list of q values, one for each residue class modulo q. However,
the approach to computing Ehrhart quasi-polynomials via generating
functions of parametric polyhedra [18, 17, 14], which we follow in the
present paper, leads to a natural, shorter representation of the coeffi-
cient functions as closed-form formulas (so-called step-polynomials) of
the dilation parameter t, using the “fractional part” function. These
closed-form formulas are naturally valid for arbitrary non-negative real
dilation parameters t, as well as any real (not just rational) param-
eter b. This fact was implicit in the computational works following
this method [18, 17], and was made explicit in [14]. The resulting
real Ehrhart theory has recently caught the interest of other authors
[15, 13]; see also [5].
The highest “expected” degree term of the weighted Ehrhart quasi-

polynomial is I(p, h)td+m, if h(x) is homogeneous of degreem; of course,
this term may vanish, as the example p = [−1, 1], h(x) = x illustrates.
For a study of the coefficients of degree d+m, d+m−1, . . . , d+m−k
of the quasi-polynomial S(tp, h), a key tool introduced by Barvinok
[7]1 is the intermediate weighted sum SL(p, h), where L is a rational
subspace of V = Rd:

SL(p, h) =
∑

y

∫

p∩(y+L)

h(x) dx, (1.2)

where the summation variable y runs over the projected lattice in V/L.
The polytope p is sliced by subspaces parallel to L through lattice
points and the integrals of h over the slices are added (see Figure 2).

1Barvinok actually only considered the unweighted case (h = 1).
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Figure 2. Intermediate sum over a polytope p (blue).
We sum the integrals over the slices of p parallel to L
going through lattice points (vertical lines).

When L = V , SL(p, h) is just the integral I(p, h), while for L = {0}, we
recover the discrete sum S(p, h). In the present study, we generalize
Barvinok’s ideas in several ways, building on our previous work in
[3, 5, 4].

1.2. Real multi-parameter quasi-polynomials and their degrees.
To describe our contributions, let us first define our notion of (real,
multi-parameter) quasi-polynomials on RN and notions of degree, which
are crucial for our paper.
First we define (rational) step-polynomials. For t ∈ R, we denote

by {t} ∈ [0, 1[ the fractional part of t. Thus t 7→ {t} is a function
on R/Z. Let η = (η1, η2, . . . , ηN) ∈ QN , which we consider as a linear
form on RN . We say that the function b 7→ {〈η, b〉} is a (rational)
step-polynomial function of (step) degree (at most) one (or a (rational)
step-linear function). If all ηi have the same denominator q, this is
a function of b ∈ RN/qZN . We define Q(RN ) to be the algebra of
functions on RN generated by the functions b 7→ {〈η, b〉}. An element
of Q(RN) is called a (rational) step-polynomial on RN . The space
Q(RN) has an obvious filtration, where Q[≤k](R

N ) is the linear span
of k or fewer products of functions b 7→ {〈η, b〉}. The elements of
Q[≤k](R

N) are said to be (rational) step-polynomials of (step) degree
(at most) k.
Next, we define QP(RN ) to be the algebra of functions on RN gener-

ated by (rational) step-polynomials and ordinary polynomial functions
of b. Elements of QP(RN ) are called quasi-polynomials on RN and take
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the form
E(b) =

∑

j=(j1,...,jN)∈ZN
≥0

|j|=j1+···+jN≤d+m

Ej(b) b
j , (1.3)

using multi-index notation for the monomials bj = bj1 · · · bjN . Here the
Ej(b) are step-polynomials.
This definition of quasi-polynomials on RN is a natural generaliza-

tion of the notion of quasi-polynomial function on the lattice ZN ,
which is more familiar in Ehrhart theory and the theory of vector
partition functions. Describing quasi-polynomials in this form, using
step-polynomials as its coefficient functions, has been implicit in the
computational works using the method of parametric generating func-
tions [18, 17]. The extension to real (rather than integer or rational)
multi-parameters b appeared in [14].
The algebra QP(RN ) inherits a gradation from the degree of polyno-

mials, which we call the polynomial degree. This is the notion of degree
that has been used throughout the literature on Ehrhart theory.
Crucial to our study will be the interplay of the polynomial degree

with another notion of degree, first introduced in our paper [4]. The
algebra QP(RN ) also has a filtration, which we call the local degree. It
combines the polynomial degree and the filtration according to step
degrees on step-polynomials. For instance, b 7→ b1b

2
2{b1 + b3} has

polynomial degree 3, step degree 1, and local degree 4. This termi-
nology of local degree comes from the fact that on each local region
n < b1 + b3 < n + 1, n ∈ Z, this function coincides with a polynomial
function of b of degree 4.

1.3. First contribution: Intermediate real multi-parameter Ehrhart
quasi-polynomials and their degree structure. Let L be a ra-
tional subspace of V . We show that b 7→ SL(p(b), h) is given by a
quasi-polynomial formula when the real multi-parameter b varies in a
chamber. This generalizes results in the literature in various ways.

i. It extends from the case of discrete sums (L = {0}) as it appears
in Ehrhart theory and the theory of vector partition functions [11]
to the general case of intermediate sums.

ii. It generalizes these works also to the real multi-parameter case.
iii. It extends our work [5] on intermediate sums to the multi-parameter

case.
iv. It analyzes the degree structure, i.e., the interplay of local degree

and polynomial degree. This is crucial for our second contribution,
relating the terms of highest polynomial degree in b of S(p(b), h)
to those of certain linear combinations of intermediate sums.
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Our theorem is the following (see Theorem 2.26 for a more detailed
statement).

Theorem 1.1. Assume that the weight h(x) is homogeneous of degree
m. When the real multi-parameter b varies in the closure of a chamber,
the function b 7→ SL(p(b), h) is given by a quasi-polynomial function of
b of local degree equal to d+m.

In particular, the terms of highest polynomial degree in b of the
function SL(p(b), h) form the homogeneous polynomial of degree d+m
given by the integral I(p(b), h), while the term of polynomial degree
0 (the “constant term”) is a step-polynomial of (step) degree at most
d+m.

Example 1.2. The simplest example is V = R with 〈µ1, x〉 = x and
〈µ2, x〉 = −x. Thus p(b) = { x ∈ R : x ≤ b1,−x ≤ b2 }. If b1 + b2 ≥ 0,
the polytope p(b) is the interval [−b2, b1]. If L = V , then SV (p(b), 1) =
b1 + b2, while for L = {0}, S{0}(p(b), 1) = b1 + b2 − {b1} − {b2} + 1.
These two functions have local degree 1 with respect to (b1, b2).

The family p(b) is the family of polytopes obtained from a fixed
simple rational polytope p by moving each facet parallel to itself in
all possible ways. We can consider smaller families of polytopes with
parallel faces. For example, as in classical Ehrhart theory, we can di-
late p to obtain tp for t ∈ R≥0, or more generally we can consider
Minkowski linear systems t1p1 + t2p2 + · · · + tqpq. By specializing
our quasi-polynomial formulas, we obtain formulas for SL(tp, h) and
SL(t1p1+ t2p2+ · · ·+ tqpq, h). In contrast to the typical settings in the
literature, we can allow the polytopes pi to be merely semi-rational,
i.e., the facets of pi are parallel to rational hyperplanes, whereas the
vertices are allowed to be arbitrary real points in V .

Example 1.3. Let p be the rectangle 0 ≤ x ≤
√
2, 0 ≤ y ≤ 1 (see

Figure 3), a semi-rational polytope.2 For t ∈ R≥0, the number of lattice
points in tp is

S(tp, 1) =
(

t−{t}+ 1
)(
√
2 t−{

√
2 t}+1

)

= E2(t) t
2 +E1(t) t+E0(t)

2The reader is invited to follow the examples using our Maple programs, available
at https://www.math.ucdavis.edu/~latte/software/packages/maple/ and as
part of LattE integrale, version 1.7.2.

https://www.math.ucdavis.edu/~latte/software/packages/maple/
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Figure 3. Number of lattice points (black) and area
(blue) of the rectangle [0, t]× [0, t

√
2], Example 1.3.

with coefficient functions

E2(t) =
√
2,

E1(t) = −
√
2 {t} − {

√
2 t}+

√
2 + 1,

E0(t) =
(

1− {t}
)(

1− {
√
2 t}
)

.

Since their formulas involve both the rational step-linear function {t}
and the irrational step-linear function {

√
2 t}, the coefficient func-

tions are not periodic in t, but merely bounded functions of t. Func-
tions of this type generalize quasi-polynomials and are called semi-
quasi-polynomials (the precise definition appears in section 2.4). In
the example, the function S(tp, 1) is constant on the intersections
]m,m+ 1[ ∩ ] n√

2
, n+1√

2
[ for m,n positive integers.

More examples of (semi-)quasi-polynomial functions SL(tp, h) will
be given later.

1.4. Second contribution: Two families of approximating multi-
parameter quasi-polynomials. Then we study the terms of highest
polynomial degree of S(p(b), h). We consider a patched weighted sum,
i.e., a particular linear combination of intermediate weighted sums, for
a finite family LBarvinok

k of subspaces L which was introduced by Barvi-
nok in [7]: LBarvinok

k is the smallest family which contains all the linear
spaces parallel to the faces of codimension ≤ k of p(b) and which is
closed under sum. We thus obtain also a function of b which is given
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by a quasi-polynomial on each chamber.

SLBarvinok

k (p(b), h) =
∑

L∈LBarvinok

k

ρ(L)SL(p(b), h) (1.4)

(where the constants ρ(L) are defined in section 3.1).
Furthermore, we introduce a new quasi-polynomial function of b, de-

fined in a refined way by linear combinations of intermediate generating
functions for the cones at vertices of p(b). We denote it Sk,cone-by-cone

(p(b), h). This function is canonically defined due to the surprising
analyticity of the cone-by-cone patched generating function (Proposi-
tion 4.2).
Our next main result is Theorem 5.3. We show that on each chamber

the three quasi-polynomials, b 7→ S(p(b), h), b 7→ SLBarvinok

k (p(b), h) and
b 7→ Sk,cone-by-cone(p(b), h), have the same terms corresponding to the
k+1 highest polynomial degrees. This result generalizes Barvinok [7] in
several ways. Besides the introduction of the new Sk,cone-by-cone(p(b), h),
we allow any polynomial weight h(x), while Barvinok considered only
h(x) = 1, and we write formulas in terms of quasi-polynomial functions
of the real-valued multi-parameter b, while Barvinok considered a single
polytope dilated by a positive integer.
Sk,cone-by-cone(p(b), h) and SLBarvinok

k (p(b), h) involve subspaces L of
codimension ≤ k. For such an L, the computation of SL(p(b), h) in-
volves discrete sums over lattice points of semi-rational cones of dimen-
sion ≤ k. For this reason, the quasi-polynomials SLBarvinok

k (p(b), h) and
Sk,cone-by-cone(p(b), h) are easier to compute than the original Ehrhart
quasi-polynomial S(p(b), h). Moreover, Sk,cone-by-cone(p(b), h) is easier

to compute than SLBarvinok

k (p(b), h).
Finally, when p(b) is a simplex, we give an explicit formula for the

coefficients ρ(L) of the particular linear combination (1.4) of intermedi-

ate weighted sums used in Barvinok’s approximation SLBarvinok

k (p(b), h)
(Proposition 3.13), using the explicit formula for a Möbius function
which was obtained by A. Björner and L. Lovász in a different context
[10].

The precise statements of our main results lead to explicit algorithms
for computing both quasi-polynomials SLBarvinok

k (p(b), h) and Sk,cone-by-cone

(p(b), h) and thus the terms corresponding to the highest k + 1 poly-
nomial degrees of S(p(b), h). The complexity of these algorithms needs
a careful analysis, which we postpone to another article. We will just
mention that in various interesting settings for fixed k and fixed cham-
ber, both quasi-polynomials SLBarvinok

k (p(b), h) and Sk,cone-by-cone(p(b), h)
can be computed by a polynomial time algorithm. This provides two
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polynomial time algorithms to compute the terms corresponding to
the highest expected k+1 polynomial degrees of S(p(b), h) for a para-
metric simplex. It was our initial motivation for the study of these
intermediate sums.

We end our article by some explicit computations (obtained via a
simple Maple program) of the quasi-polynomials Sk,cone-by-cone(tp, 1)

and SLBarvinok

k (tp, 1) for a dilated rational simplex p in dimension d ≤ 4,
for k ≤ d. For k = 0 they both give the volume td vol(p) and for k = d
they both give the number of lattice points of tp. For 1 ≤ k ≤ d − 1,
SLBarvinok

k (tp, 1) and Sk,cone-by-cone(tp, 1) have the same k + 1 highest
degree coefficients, but we see that they are actually different quasi-
polynomials. It is not clear to us which one is the “best.”

1.5. Techniques of this paper. It should be obvious that our work
was inspired by the remarkable construction of Barvinok [7]. The ar-
ticle [13] was part of our motivation to consider the case of a real
multi-parameter and not just one-parameter dilations as in our previ-
ous articles on the subject.
The present article builds on previous constructions which we already

introduced in [3] and [5], and on the detailed study of the intermediate
sums in [4] and [5].
The cone-by-cone approximation was introduced at the level of gen-

erating functions in [3], where we proved that it gives an easier algo-
rithm than [7] for computing the highest degree terms of the Ehrhart
quasi-polynomial of a dilated polytope. However, the existence of the
“third” quasi-polynomial Sk,cone-by-cone(p(b), h) is a new result. It is
based on our explicit computation of a Fourier series, in [4]. We use
also this Fourier series for the proof of Theorem 5.3. In particular, it
gives a more streamlined proof of Barvinok’s Theorem 1.3 in [7].

Let us give the main ideas of our proofs.
We use the Brianchon–Gram decomposition of a polytope p(b) as a

signed sum of its supporting cones and the corresponding Brion for-
mula, reducing the study of intermediate weighted sums SL(p(b), h)
to that of intermediate generating functions SL(s+ c)(ξ) over tangent
cones at vertices, which are defined in a similar way, by replacing h(x)
with an exponential function x 7→ e〈ξ,x〉. For b in a chamber τ , the
vertices of p(b) can be indexed, s1(b), . . . , sr(b), in such a way that for
each index j, the cone of feasible directions at vertex sj(b) does not
depend on b. Furthermore, the vertex sj(b) depends linearly of the pa-
rameter b. This fact is the basis of all the constructions and results of
the present paper. We use our previous results on semi-rational affine
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polyhedral cones in [4] and [5], where we studied in detail the inter-
mediate generating functions of a shifted cone SL(s+ c)(ξ) (where c is
a fixed polyhedral rational cone) as a function of s and ξ. Theorem
5.3 uses the results of [4] on the bidegree structure, i.e., the interplay
between the local degree with respect to s and the homogeneous degree
with respect to ξ. Also, as in Barvinok’s Fourier inversion method in
[7], the Poisson summation formula for SL(s + c)(ξ) obtained in [4] is
crucial to the proof of Theorem 5.3.

2. Intermediate weighted Ehrhart quasi-polynomials for

parametric polytopes

2.1. Notations. In this paper, V is a vector space over R of dimen-
sion d. The running element of V is denoted by x. As usual, the dual
vector space is denoted by V ∗. By V ∗

C we denote the complexified dual
space. The running element of V ∗ or V ∗

C is denoted by ξ.
The vector space V is endowed with a lattice Λ (one says that V

is rational). We denote by Λ∗ the dual lattice in V ∗. We denote by
VQ = Λ⊗Q and V ∗

Q = Λ∗⊗Q the sets of rational elements of V and V ∗,
respectively. A subspace L of V is called rational if L ∩ Λ is a lattice
in L. If L is a rational subspace, the image of Λ in V/L is a lattice in
V/L, so that V/L is a rational vector space. The image of Λ in V/L is
called the projected lattice. It is denoted by ΛV/L. A rational space V ,
with lattice Λ, has a canonical Lebesgue measure dx = dmΛ(x), for
which V/Λ has measure 1. We denote by L⊥ ⊂ V ∗ the space of linear
forms ξ ∈ V ∗ which vanish on L.
An affine subspace of V is called semi-rational if it can be written

as s+ L where L is a rational subspace and s is any point of V .
The polyhedra of this study are subsets of V . A polyhedron is the

intersection of a finite number of closed halfspaces. A polytope is a
compact polyhedron.
The faces of a polyhedron p can be of dimension 0 (vertices), 1

(edges), . . ., dim(p)− 1 (facets), and dim(p) (the polyhedron p itself).
A wall of a polyhedron p is a hyperplane H such that p is on one side
of H and dim(H ∩ p) = dim(p)− 1. Then H ∩ p is called a facet of p.
A polytope p of dimension d is called simple if each vertex s belongs
to exactly d facets.
If f ⊂ V is a polyhedron, the subspace lin(f) is defined as the linear

subspace of V generated by p− q for p, q ∈ f. A polyhedron p is called
semi-rational if lin(f) is rational for all facets f of p.
In this article, a cone is a convex polyhedral rational cone (with

vertex 0) and an affine cone is the shifted set s+ c of a rational cone c
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for some s ∈ V . A cone c is called pointed if it does not contain a line.
A cone c is called simplicial if it is generated by linearly independent
elements of V . A simplicial cone c is called unimodular if it is generated
by independent lattice vectors v1, . . . , vk such that {v1, . . . , vk} is part
of a basis of Λ. An affine cone s + c is called pointed (simplicial,
unimodular, respectively) if the associated cone c is.
A polytope is a compact polyhedron. The set of vertices of p is

denoted by V(p). For each vertex s, the cone of feasible directions at s
is denoted by cs.
When we speak of the parametric polytope p(b), the parameter space

is RN . Its running element is denoted by b = (b1, b2, . . . , bN ). We

denote by ej the canonical basis of RN , and write also b =
∑N

j=1 bjej .

The indicator function of a subset E is denoted by [E].
For t ∈ R, we denote by {t} ∈ [0, 1[ the fractional part of t. Then

t− {t} is an integer.

2.2. Intermediate weighted sums and generating functions on
polyhedra. Let p ⊂ V be a semi-rational polytope, L a rational sub-
space of V and let h be a polynomial function on V . We are interested
in the properties of the intermediate weighted sum on p,

SL(p, h) =
∑

y∈ΛV/L

∫

p∩(y+L)

h(x) dx. (2.1)

Here, ΛV/L is the projected lattice and dx is the Lebesgue measure
on y + L defined by the intersection lattice L ∩ Λ. Thus we integrate
over the intersections of p with subspaces parallel to a fixed rational
subspace L through all lattice points, and sum the integrals.
Although SL(p, h) depends on the lattice Λ, we do not indicate this

dependence in the notation.
SL(p, h) interpolates between the integral

I(p, h) =

∫

p

h(x) dx

of h on p, which corresponds to L = V , and the discrete weighted sum

S(p, h) =
∑

x∈p∩Λ
h(x),

which corresponds to L = {0}.
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Consider, instead of the polynomial function h(x), the exponential
function e〈ξ,x〉. Thus we define the following holomorphic function of ξ:

SL(p)(ξ) =
∑

y∈ΛV/L

∫

p∩(y+L)

e〈ξ,x〉 dx. (2.2)

Following the method initiated by Barvinok, the study of the generating
function SL(p)(ξ) reduces to the computation of the similar functions
SL(u)(ξ), where u are affine cones, see [6, 2, 3], etc. However, for
an arbitrary non-compact polyhedron p, the above definition (2.2) of
SL(p)(ξ) makes sense only as a generalized function of iξ. To avoid the
use of distributions, and stay in an algebraic context, we will define
SL(p)(ξ), for any semi-rational polyhedron p as a meromorphic function
of ξ, satisfying a valuation property.
Let us recall the notations of [4].

Definition 2.1.

(a) We denote by Mℓ(V
∗) the ring of meromorphic functions around

0 ∈ V ∗
C which can be written as a quotient φ(ξ)

∏N
j=1

〈ξ,wj〉
, where φ(ξ)

is holomorphic near 0 and wj are non-zero elements of V in finite
number.

(b) We denote by R[≥m](V
∗) the space of rational functions which can

be written as P (ξ)
∏N

j=1
〈ξ,wj〉

, where P is a homogeneous polynomial of

degree greater or equal to m+N . These rational functions are said
to be homogeneous of degree at least m.

(c) We denote by R[m](V
∗) the space of rational functions which can

be written as P (ξ)
∏N

j=1
〈ξ,wj〉

, where P is homogeneous of degree m+N .

These rational functions are said to be homogeneous of degree m.

Definition 2.2. For φ ∈ Mℓ(V
∗), the homogeneous component φ[m]

of degree m of φ is defined by considering φ(τξ) as a meromorphic
function of one variable τ ∈ C, with Laurent series expansion

φ(τξ) =
∑

m≥m0

τmφ[m](ξ).

Thus φ[m] ∈ R[m](V
∗).

Definition 2.3. AnMℓ(V
∗)-valued valuation on the set of semi-rational

polyhedra p ⊆ V is a map F from this set to the vector space Mℓ(V
∗)

such that whenever the indicator functions [pi] of a family of polyhedra
pi satisfy a linear relation

∑

i ri[pi] = 0, then the elements F (pi) satisfy
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the same relation
∑

i

riF (pi) = 0.

We recall the following result.

Proposition 2.4. Let L ⊆ V be a rational subspace. There exists
a unique valuation which associates a meromorphic function SL(p)(ξ)
belonging to Mℓ(V

∗) to every semi-rational polyhedron p ⊆ V , so that
the following properties hold:

(i) If p contains a line, then SL(p) = 0.
(ii)

SL(p)(ξ) =
∑

y∈ΛV/L

∫

p∩(y+L)

e〈ξ,x〉 dx,

for every ξ ∈ V ∗ such that the above sum converges.

We remark that property (i) above reflects the fact that the distri-
bution t 7→∑

n∈Z e
int is supported on 2πZ.

The function SL(p)(ξ) will be called the intermediate generating
function of the polyhedron p.

If p is a polytope, then clearly the homogeneous component of degree
r of SL(p)(ξ) is given by

SL(p)[r](ξ) =
∑

y∈ΛV/L

∫

p∩(y+L)

〈ξ, x〉r
r!

dx.

Thus the intermediate generating function SL(p)(ξ) of the polytope p

allows us to compute SL(p, h) for any polynomial h by decomposing h
in sums of powers of linear forms [2].

The intermediate generating function SL(p)(ξ) interpolates between
the integral (continuous generating function)

I(p)(ξ) =

∫

p

e〈ξ,x〉 dx

which corresponds to L = V , and the discrete sum (discrete generating
function)

S(p)(ξ) =
∑

x∈p∩Λ
e〈ξ,x〉

which corresponds to L = {0}.
We introduced in [4] the algebra QPΨ(V ) of quasi-polynomial func-

tions on V defined as follows. (These definitions are analogues of the
quasi-polynomial functions on RN defined in the introduction.)
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Definition 2.5. Let Ψ be a finite subset of elements of V ∗
Q . Define

the algebra QΨ(V ) of functions of s ∈ V generated by the functions
s 7→ {〈γ, s〉} with γ ∈ Ψ. A function f will be called a (rational)
step-polynomial function on V , if f belongs to QΨ(V ) for some Ψ.

Such a function f is bounded and periodic modulo qΛ for some in-
teger q.
The algebra QΨ(V ) again has a natural filtration, where QΨ

[≤k](V )

is the subspace spanned by products of at most k functions {〈γ, s〉}.
The algebra QPΨ(V ) is the algebra generated by QΨ(V ) and ordinary
polynomial functions. A function f will be called a quasi-polynomial
function on V , if f belongs to QPΨ(V ) for some Ψ.

Let c be a fixed cone. The translated cone s + c is a semi-rational
polyhedron. Let SL(s+ c)[m](ξ) be the degree-m homogeneous compo-
nent of the functions SL(s+c)(ξ). The lowest homogeneous component
of SL(s+ c) has degree −d and is equal to I(c)(ξ), as proved in [4, The-
orem 2.24 (iii)].
Remark that for any v ∈ Λ+ L,

SL(v + s+ c)(ξ) = e〈ξ,v〉SL(s+ c)(ξ).

Thus the function

ML(s, c)(ξ) = e−〈ξ,s〉SL(s+ c)(ξ) (2.3)

is a function of s ∈ V/(Λ + L).
LetML(s, c)[m] be the degree-m homogeneous component of the func-

tion ML(s, c). The function s 7→ ML(s, c)[m] is a periodic function of
the variable s ∈ V with values in the space R[m](V

∗). Results of [4] on
the nature of this function will be used in section 2.4.
Note the obvious, but fundamental formula:

SL(s+ c)[m](ξ) =

m+d
∑

r=0

ML(s, c)[m−r](ξ)
〈ξ, s〉r
r!

. (2.4)

Remark 2.6. Equation (2.4) expresses the function s 7→ SL(s+c)[m](ξ)
as a quasi-polynomial function of the variable s ∈ V with values in the
space R[m](V

∗). Indeed s 7→ ML(s, c)[m−r](ξ) is a periodic function

on V given by a step-polynomial formula, while s 7→ 〈ξ,s〉r
r!

is a polyno-
mial function of s.

The lowest degree homogeneous component of ML(s, c) is the same
as that of SL(s+ c), hence of degree −d and equal to I(c)(ξ).

ML(s, c)[−d] = I(c)(ξ). (2.5)
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When L = {0}, we write S(s+ c) instead of S{0}(s+ c) and M(s, c)
instead of M{0}(s, c).

2.3. Parametric polytopes.

2.3.1. Chambers. First, we recall some well known notions about para-
metric polytopes (cf. for instance [16]). Let µ = (µ1, µ2, . . . , µN) be a
list of N elements of Λ∗ such that the cone generated by µ is the whole
space V ∗. For b = (b1, b2, . . . , bN ) ∈ RN , let

p(µ, b) = { x ∈ V : 〈µj, x〉 ≤ bj , j = 1, . . . , N }.
Then p(µ, b) is a semi-rational polytope. We will often denote it simply
by p(b).
It is clear that if we dilate the parameter b in tb with t ≥ 0, we obtain

the dilated polytope tp(b).

tp(b) = p(tb). (2.6)

We denote also by µ the map V → RN given by

µ(x) = (〈µ1, x〉, 〈µ2, x〉, . . . , 〈µN , x〉).
If v0 ∈ V , the shifted polytope p(b) + v0 is given by

p(b) + v0 = p(b+ µ(v0)). (2.7)

Hence, for many aspects of parametric polytopes, the relevant space
of parameters is not RN itself, but the quotient space RN/µ(V ), (see
Remark 2.32). For instance, p(b) is not empty if and only if b lies in the
closed cone generated by the standard basis ei of R

N and the subspace
µ(V ). Indeed, for x ∈ p(b), b =

∑

j(bj − 〈µj, x〉)ej + µ(x).

Example 2.7. The simplest example is V = R with µ1 = x, µ2 = −x.
Thus p(b) = {x ∈ R, x ≤ b1,−x ≤ b2}. If b1 + b2 < 0, p(b) is empty,
otherwise it is the interval [−b2, b1].

Example 2.8 (Figure 4). Let V = R2 and µ = (−x1,−x2, x1 +
x2,−x1 + x2). Then p(b) is defined by the inequalities

−x1 ≤ b1, −x2 ≤ b2, x1 + x2 ≤ b3, −x1 + x2 ≤ b4.

Figure 4 displays this polygon for three values of b, one for each of
the three combinatorial types which occur in this example. (See below
Example 2.15).

When b varies, the combinatorial type of p(b) changes. The µ-
chambers τ ⊂ RN , defined below, are conical open subsets such that the
combinatorial type of p(b) does not change when b runs over τ . First,
we want to index the vertices of p(b). For this purpose, we introduce
the following subsets of {1, . . . , N}.
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Figure 4. Example 2.8, p(b) for b = (2, 0, 0, 6), (0, 0, 5, 3), (0, 3, 3, 0).

Definition 2.9. B is the set of subsets B ⊆ {1, . . . , N} such that
(µj, j ∈ B) is a basis of V ∗.
For B ∈ B, the linear map b 7→ sB(b) : R

N → V is defined by

〈µj, sB(b)〉 = bj for j ∈ B.

For B ∈ B, the cone cB ⊂ V is defined by

cB = {x ∈ V ; 〈µj, x〉 ≤ 0, for j ∈ B}.
Thus, the point sB(b) is the intersection of the d linearly independent

hyperplanes 〈µj, sB(b)〉 = bj for j ∈ B. The points sB(b), B ∈ B,
are classically called the vertices of the arrangement of hyperplanes
〈µj, x〉 = bj .
The actual vertices of the polytope p(b) are exactly those points sB(b)

which satisfy the remaining inequalities 〈µk, sB(b)〉 ≤ bk for k /∈ B.

Example 2.10 (Continuation of Example 2.8, Figure 4). Here, B con-
sists of all pairs [i, j] with 1 ≤ i < j ≤ 4. The six points sB(b) are the
intersections of the corresponding two lines:
s[1,2](b) = (−b1,−b2), s[1,3](b) = (−b1, b1+b3), s[1,4](b) = (−b1,−b1+b4),
s[2,3](b) = (b2 + b3,−b2), s[2,4](b) = (−b2 − b4,−b2),
s[3,4](b) = (1

2
(b3 − b4),

1
2
(b3 + b4)).

The six cones cB are (up to a shift) those colored in blue in Figure 4.

Thus, for B ∈ B, we consider the following cone in RN .

dB = {b ∈ RN ; bk − 〈µk, sB(b)〉 ≥ 0, for k /∈ B}. (2.8)

Lemma 2.11. Let ej , 1 ≤ j ≤ N be the standard basis of RN , and let
φj be the projection of ej on RN/µ(V ) for 1 ≤ j ≤ N .

(i) The cone dB coincides with µ(V ) +
∑

k/∈B R≥0ek.
(ii) The projection of dB on RN/µ(V ) is the simplicial cone with gen-

erators φk, k /∈ B.
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Figure 5. Four projected chambers

Proof. Part (i) follows from the formula

b− µ(sB(b)) =
∑

k/∈B

(

bk − 〈µk, sB(b)〉
)

ek.

For (ii), note that if B is a subset of d elements of {1, . . . , N}, the
linear forms (µj, j ∈ B) are linearly independent if and only if the
vectors (φk, k /∈ B) are. �

Definition 2.12. A µ-chamber τ ⊂ RN is a connected component of
the complement of the union of the boundaries of the cones dB (2.8)
for all B ∈ B.
Thus, for every j ∈ {1, . . . , N} and B ∈ B, the linear form bj −

〈µj, sB(b)〉 keeps a constant sign on every chamber.
There is a unique chamber τe such that p(b) is empty for b ∈ τe, it is

the complement of the cone µ(V ) +
∑N

k=1R≥0ek. The other chambers

are contained in µ(V ) +
∑N

k=1R≥0ek, they are called admissible.
Chambers are open conical sets which contain the vector subspace

µ(V ). Thus the relevant sets are the projected chambers in RN/µ(V ).
They are easier to visualize.

Lemma 2.13. The projected chambers in RN/µ(V ) are the connected
components of the complement of the union of the boundaries of the
cones generated by N − d linearly independent vectors among the φj’s.

We have the following well-known description of the walls, vertices
and cones at vertices of p(b) when b varies in a µ-chamber.

Proposition 2.14. Let τ be a µ-chamber. Let Bτ be the set of B ∈ B
such that τ is contained in the cone dB. Then, for b ∈ τ , the following
holds.

(i) p(b) is simple.
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(ii) The hyperplane 〈µj, x〉 = bj is a wall of p(b) if and only if j belongs
to some B in Bτ .

(iii) The vertices of p(b) are the points sB(b) where B runs over Bτ .
(iv) For B ∈ Bτ , the cone of feasible directions at vertex sB(b) of p(b)

is the cone cB = { x ∈ V : 〈µj, x〉 ≤ 0 for j ∈ B }. In particular,
it depends only on B, not on b.

The projection τ/µ(V ) of the chamber τ on RN/µ(V ) is the inter-
section of all the simplicial cones, generated by subsets of the φk, and
containing it. Thus an equation µj is redundant for p(b) if and only if
the vector φj is an edge of all the simplicial cones dB/µ(V ), containing
τ/µ(V ).

Example 2.15 (Continuation of Example 2.8 and Figure 4). Here,
Φ = (φ1, φ2, φ3 =

φ1+φ2

2
, φ4 =

−φ1+φ2

2
). There are four chambers, whose

projections are represented in Figure 5. The projections of the three
admissible chambers τi, i = 1, 2, 3 are colored in blue. The fourth
chamber (for which p(b) is empty) is colored in yellow.

τ1 is the cone { b :∑4
j=1 bjφj ∈ R>0φ1 + R>0φ3 }.

τ2 is the cone { b :∑4
j=1 bjφj ∈ R>0φ2 + R>0φ3 }.

τ3 is the cone { b :∑4
j=1 bjφj ∈ R>0φ2 + R>0φ4 }.

For instance, τ2 is defined by the inequalities −b1+ b2+ b4 > 0, 2b1+
b3 − b4 > 0.
As we see on Figure 4, for b ∈ τ1, p(b) is a triangle, for b ∈ τ2, it is a

quadrilateral, for b ∈ τ3, it is again a triangle.
We have Bτ1 = {[2, 3], [2, 4], [3, 4]}, Bτ2 = {[1, 2], [1, 4], [2, 3], [3, 4]},

Bτ3 = {[1, 2], [1, 3], [2, 3]}.
The index 1 does not belong to the union of the sets B when B varies

in Bτ1 , thus the condition −x1 ≤ b1 is redundant for the polytope p(b)
when b ∈ τ1, as seen on Figure 4.
Similarly, the condition −x1 + x2 ≤ b4 is redundant for the polytope

p(b) when b ∈ τ3.
For b ∈ τ2, the four equations 〈µj, x〉 = bj are walls of the quadrilat-

eral p(b).

If b lies in the boundary of an admissible chamber τ , then all vertices
of p(b) are of the form sB(b), for B ∈ Bτ , but several B ∈ Bτ may give
the same vertex sB(b).

Remark 2.16 (Minkowski sums of polytopes). Remark finally the
following relation between parametric polytopes and Minkowski sums
t1p1 + t2p2 + · · · + tqpq of polytopes. Let τ be an admissible chamber.
Let b1, b2, . . . , bq in τ and t1 ≥ 0, . . . , tq ≥ 0, then t1b1+ t2b2+ · · ·+ tqbq
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Figure 6. Cones at vertex s2,4, limit of s1,2 and s1,4,
when the face −x1 = b1 moves to the left, Example 2.8.

is in τ , and

t1p(b1) + t2p(b2) + · · ·+ tqp(bq) = p(t1b1 + · · ·+ tqbq). (2.9)

Indeed, using the linearity of the map b 7→ sB(b), we see immediately
that any point in the convex hull of the elements sB(t1b1 + · · · + tqbq)
with B ∈ Bτ is a sum of points in p(t1b1), . . . , p(tqbq).
Conversely (see section 2.5.4), it can be shown that any Minkowski

linear sum t1p1 + t2p2 + · · · + tqpq can be embedded in a parametric
family of polytopes.

Remark 2.17 (Wall crossing). One of the interest of parametric poly-
topes is that we can also observe the variation of p(b) (see Figure 4),
when the parameter b crosses a wall of a chamber τ . This corresponds
to flips of the corresponding toric varieties. The variation of the set
p(b) has been studied in detail in [9]. In this article we will only be con-
cerned with the behavior of the function b 7→ SL(p(b), h) when b runs
in the closure of a fixed admissible chamber.

2.3.2. Brion’s theorem on supporting cones at vertices. The basis of
the present article is the following theorem, which follows from the
Brianchon–Gram decomposition of a polytope p(b).

Proposition 2.18. The indicator function of a polytope is equal to
the sum of the indicator functions of its supporting cones at vertices,
modulo linear combinations of indicator functions of affine cones with
lines.

For parametric polytopes, combined with the above description of
cones at vertices, this gives a decomposition of the indicator function
[p(b)] for b ∈ τ . If b lies in the boundary of an admissible chamber τ ,
then several B ∈ Bτ may give the same vertex sB(b). Nevertheless,
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when b lies in the closure τ , then modulo indicator functions of affine
cones with lines, the indicator function of the supporting cone of p(b) at
vertex sB(b) is the sum of the indicator functions of the cones sB(b)+cB
for all the B’s which give this vertex (Figure 6). One way to prove it is
to use the continuity of the Brianchon–Gram decomposition of [p(b)],
proven in [9].

Proposition 2.19. Let τ be an admissible µ-chamber with closure τ .
For b ∈ τ , the indicator function of p(b) is given by

[p(b)] ≡
∑

B∈Bτ

[sB(b) + cB] mod indicator functions of cones with lines.

From Proposition 2.19 and the valuation property of intermediate
generating functions, we obtain Brion’s formula, which expresses the
holomorphic function SL(p(b))(ξ) as a sum of meromorphic functions
indexed by the vertices of the polytope p(b).

SL(p(b))(ξ) =
∑

B∈Bτ

SL(sB(b) + cB)(ξ), for b ∈ τ . (2.10)

2.4. Step-polynomials and (semi-)quasi-polynomials of the multi-
parameter b. In this section, we consider a fixed rational subspace
L ⊆ V . There corresponds an intermediate generating function SL(p(b))(ξ)
and intermediate weighted sums SL(p(b), h) on a parametric polytope
p(b).
Recall from the introduction the algebras of step-polynomials and

quasi-polynomials on RN , in terms of which we will describe these
intermediate sums as functions of the parameter b ∈ RN . We give
more general definitions now.

Definition 2.20. Let Ψ ⊆ RN .

(i) QΨ(RN) is the algebra of functions on RN generated by the func-
tions b 7→ {〈η, b〉}, where η ∈ Ψ. An element of QΨ(RN ) is called
a step-polynomial on RN .

(ii) For Ψ = QN , we obtain the algebra of rational step-polynomials,
which we abbreviate as Q(RN).

(iii) For Ψ = RN , we obtain the algebra of step-polynomials QRN
(RN).

Note that a step-polynomial function (whether rational or not) is a
bounded function on RN .
The algebra QΨ(RN) has a natural filtration, where QΨ

[≤k](R
N) is the

subspace spanned by products of at most k functions {〈η, b〉}. Again
this is a filtration, not a grading, because several step-polynomials with
different (step) degrees may represent the same function.
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Example 2.21. For every t ∈ R,

1− {t} − {−t} − (1− {2t} − {−2t})(1− {3t} − {−3t}) = 0.

Definition 2.22. Again let Ψ ⊆ RN .

(i) The tensor product QPΨ(RN) = QΨ(RN)⊗P(RN ) is the algebra
of functions on RN generated by step-polynomials in QΨ(RN ) and
ordinary polynomials on RN . An element of QPΨ(RN ) is called
a semi-quasi-polynomial on RN .

(ii) For Ψ = QN , we obtain the algebra of quasi-polynomials on RN ,
which we abbreviate as QP(RN ).

(iii) For Ψ = RN , we obtain the algebra of semi-quasi-polynomials

on RN , denoted by QPRN
(RN).

A (semi-)quasi-polynomial f(b) is a piecewise polynomial. More pre-
cisely, let Ψ be a finite set of η ∈ RN such f ∈ QΨ(RN), i.e., f(b) can
be expressed as a polynomial in the functions s 7→ {〈η, b〉}, with η ∈ Ψ.
The open “pieces” on which f(b) is a polynomial function of b are the
Ψ-alcoves defined as follows.

Definition 2.23. Let Ψ be a finite subset of RN . We consider the
hyperplanes in RN defined by the equations

〈η, b〉 = n, for η ∈ Ψ and n ∈ Z.

A connected component of the complement of the union of these hy-
perplanes is called a Ψ-alcove.

On the tensor product QPΨ(RN), we will consider the grading inher-
ited from the usual degree on P(RN ). We will call the corresponding
degree the polynomial degree.
We consider also the degree arising from the tensor product filtra-

tion, which we call the local degree. With these notations, if f(b) ∈
QPΨ

[≤k](R
N), then f(b) restricts as a polynomial function of degree ≤ k

on any Ψ-alcove.

Example 2.24. The quasi-polynomial f(b) = b3{b} on R has polyno-
mial degree 3 and local degree 4. It is equal to b4 − nb3, a polynomial
of degree 4, for n ≤ b < n + 1.

In the remainder of this section, we will have Ψ ⊂ QN , and hence
work with rational step-polynomials and quasi-polynomials; however,
in subsection 2.5, we will use more general Ψ. We now explain how the
finite set Ψ is constructed.
In [4], for any rational cone c ⊂ V , and a rational subspace L, we

constructed a finite subset ΨL
c ⊂ Λ∗∩L⊥ of integral linear forms on V [4,
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Definition 2.23]. Indeed, we start by decomposing c in cones u (modulo
cones with lines) with a face parallel to L, then we decompose the
projections of u on V/L as a signed decomposition of unimodular cones
with respect to the projected lattice ΛV/L with dual lattice Λ∗ ∩ L⊥.
In the set ΨL

c , we collect all the generators of the dual cones used in
this decomposition. (The decomposition is not unique, but we do not
record the dependence of ΨL

c on the decomposition in the notation.)

As ΨL
c ⊂ Λ∗ ∩ L⊥, the step-polynomials in the algebra QΨL

c (V ) (see
subsection 2.2) are functions on V/(Λ + L).

Definition 2.25. (i) Let B ∈ B. Define ΨL
B(µ) as the set of rational

linear forms on RN defined by 〈η, b〉 = 〈γ, sB(b)〉, for γ ∈ ΨL
cB
.

(ii) If τ is a µ-chamber, ΨL
τ (µ) is the union of the sets ΨL

B(µ) when B
runs in Bτ .

By definition, if f ∈ QPΨL
cB (V ) (see subsection 2.2), then the func-

tion b 7→ f(sB(b)) is in QPΨL
B(µ)(RN ).

Let us describe a little more precisely the sets ΨL
cB

and the corre-

sponding step-polynomials on RN when L = V or L = {0}.
When L = V , the sets ΨL

cB
are empty, thus the step-polynomials in

QΨL
τ (µ)(RN) are just the constants.
When L = {0}, let q ∈ N be such that the lattice qΛ∗ is contained

in the lattice generated by the elements µj, for j ∈ B. Then the
multiple qsB(b) of the vertex sB(b) belongs to Λ if b ∈ ZN , therefore any

step-polynomial f(b) ∈ QΨ
{0}
B (µ)(RN) is qZN -periodic. Thus a quasi-

polynomial f on RN gives by restriction to ZN a periodic function of
period q, and we recover the usual notion of quasi-periodic function on
a lattice.
If cB is the simplicial cone described by inequalities 〈µj, x〉 ≤ 0, with

j ∈ B, and if the µj, j ∈ B form a basis of Λ∗, then the set Ψ
{0}
cB ⊂ Λ∗ is

just equal to {µj : j ∈ B }. Thus if the sequence µ is unimodular, that
is, if {µj : j ∈ B } is a basis of Λ∗ for any B ∈ B, any step-polynomial

f(b) ∈ QΨL
τ (µ)(RN) is ZN -periodic, in particular f(b) is constant on

ZN .

2.5. Weighted Ehrhart (semi-)quasi-polynomials.

2.5.1. Case of a parametric polytope. We can now state the first im-
portant result of this article. We summarized it in the introduction, in
a less technical form, as Theorem 1.1.

Theorem 2.26. Let V be a rational vector space with lattice Λ. Let
L ⊆ V be a rational subspace. Let µ = (µ1, . . . , µN) be a list of elements
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of Λ∗ which generate V ∗ as a cone. For b ∈ RN , let p(b) ⊂ V be the
polytope defined by

p(b) = { x ∈ V : 〈µj, x〉 ≤ bj , j = 1, . . . , N }.
Let τ ⊂ RN be an admissible µ-chamber. Let h be a polynomial function
on V of degree m.

(i) There exists a quasi-polynomial of local degree equal to m+ d,

EL(µ, h, τ) ∈ QPΨL
τ (µ)

[≤m+d](R
N) (2.11)

such that

SL(p(b), h) = EL(µ, h, τ)(b), (2.12)

for every b ∈ τ (the closure of τ in RN ).
(ii) If h(x) is homogeneous of degreem, then the terms of EL(µ, h, τ)(b)

of polynomial degree m+d form a homogeneous polynomial of de-
gree m+ d that is equal to the integral

∫

p(b)
h(x) dx for b ∈ τ .

(iii) More precisely, if h(x) = 〈ℓ,x〉m
m!

for some ℓ ∈ V ∗, we have

EL(µ, h, τ)(b) =
m+d
∑

r=0

EL
[r](µ, h, τ)(b) (2.13)

for b ∈ τ , where for each r, the function of b ∈ RN given by

EL
[r](µ, h, τ)(b) =

(

∑

B∈Bτ

ML(sB(b), cB)[m−r](ξ)
〈ξ, sB(b)〉r

r!

)

∣

∣

∣

∣

ξ=ℓ

is an element of QΨL
τ (µ)

[≤m+d−r](R
N) ⊗ P[r](R

N ), i.e., of polynomial

degree r and local degree at most m+ d.

In fact, for a single B, ML(sB(b), cB)[m−r] is a rational function of ξ
and may be singular at ℓ, so that the value ML(sB(b), cB)[m−r](ℓ) may
not be well defined. However, as we will see in the proof, for each r, the

sum over theB ∈ Bτ of the rational functionsM
L(sB(b), cB)[m−r](ξ)

〈ξ,sB(b)〉r
r!

is a polynomial function of ξ, so it can be evaluated at ξ = ℓ. So For-
mula (2.13) is well defined.

Proof. The proof of Theorem 2.26 rests on Brion’s formula (2.10). We
observe that it is enough to prove the theorem in the case where the
weight h is a power of a linear form,

h(x) =
〈ℓ, x〉m
m!

,

for some ℓ ∈ V ∗, as any weight can be written as a linear combination of
those. In this case, SL(p(b), h) is the value at ξ = ℓ of the homogeneous
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term of degree m of the holomorphic function SL(p(b))(ξ). So we write
(using the fundamental Equation (2.4))

SL(p(b), h)[m](ξ) =

(

∑

B∈Bτ

SL(sB(b) + cB)[m](ξ)

)

∣

∣

∣

∣

ξ=ℓ

=
m+d
∑

r=0

(

∑

B∈Bτ

ML(sB(b), cB)[m−r](ξ)
〈ξ, sB(b)〉r

r!

)

∣

∣

∣

∣

ξ=ℓ

.

For an individual B, the term SL(sB(b) + cB)[m](ξ) may be singular at
ξ = ℓ. However the sum over the set of vertices Bτ is a polynomial
function of ξ.
We apply Theorem 2.24 of [4]. For each r and B, considered as a

function of s ∈ V , ξ ∈ V ∗, the function (s, ξ) 7→ ML(s, cB)[m−r](ξ)
belongs to the space

QΨL
cB

[≤m+d−r](V )⊗R[m−r](V
∗).

Compose with the linear map b 7→ sB(b). We obtain that, for each r
and B, the function of b ∈ RN , ξ ∈ V ∗ given by

(b, ξ) 7→ ML(sB(b), cB)[m−r](ξ)
〈ξ, sB(b)〉r

r!
belongs to

QΨL
B(µ)

[≤m+d−r](R
N)⊗P[r](R

N)⊗R[m](V
∗).

Therefore the sum over B ∈ Bτ of these terms, for a fixed r, belongs to

QΨL
τ (µ)

[≤m+d−r](R
N)⊗P[r](R

N)⊗R[m](V
∗).

Now the sum over B ∈ Bτ is a quasi-polynomial function of b with
values in the space of polynomials in ξ, not just rational functions of ξ.
It follows that for each r, the term of polynomial degree r in b of the
full sum depends also polynomially on ξ. This term is

∑

B∈Bτ

ML(sB(b), cB)[m−r](ξ)
〈ξ, sB(b)〉r

r!
.

When we evaluate it at ξ = ℓ, we obtain (2.13), and all statements
but part (ii), which we prove now.
Let us compute the term of polynomial degree r = m+d with respect

to b, in (2.13). From Equation (2.5), we know thatML(sB(b), cB)[−d](ξ) =
I(cB)(ξ), thus the term of index r = m+ d in (2.13) is equal to
(

∑

B∈Bτ

〈ξ, sB(b)〉m+d

(m+ d)!
I(cB)(ξ)

)

∣

∣

∣

∣

ξ=ℓ

=

(

∑

B∈Bτ

I(sB(b) + cB)[m](ξ)

)

∣

∣

∣

∣

ξ=ℓ

.
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By Proposition 2.19, this last sum is equal to I(p(b))[m](ℓ), which is

precisely the integral
∫

p(b)
〈ℓ,x〉m
m!

dx. �

Definition 2.27. The function EL(µ, h, τ)(b) of Theorem 2.26 is called
the weighted intermediate Ehrhart quasi-polynomial of the parametric
polytope p(b) (with respect to the weight h, the subspace L and the
chamber τ).

Example 2.28 (Example 2.7, continued). Let µ = (−1, 1). Then for
b = (b1, b2) ∈ R2, p(b) is the interval { x : −b2 ≤ x ≤ b1 }. There are two
chambers, { b : −b2 < b1 } and { b : −b2 > b1 }. For the first chamber
the number of integers in p(b) is ⌊b1⌋−⌈−b2⌉+1 = b1+b2−{b1}−{b2}+1.
For the other chamber, it is of course 0.

Example 2.29 (continuation of Examples 2.8, 2.10, and 2.15). We
compute the quasi-polynomial function EL(µ, h, τ2)(b) (p(b) is a quadri-
lateral for b ∈ τ2), first for L = {0}, then for the case when L is the
vertical line L = R(0, 1). The weight is h(x) = 1.

(i) For L = {0} and h = 1, i.e., we count the integer points in p(b),
we write

E{0}(µ, 1, τ2)(b) = E[2](b) + E[1](b) + E[0](b),

where E[r](b) collects the terms of polynomial degree r with re-
spect to b. E[2](b) is the volume of the quadrilateral. It is a
polynomial function, easy to compute. The other two functions
were computed with our Maple program.

E[2](b) = − b2
1

2
+

b2
2

2
+

b2
3

4
− b2

4

4
+ b1b2 + b1b4 + b2b3 +

b3b4
2
.

E[1](b) =
(

1
2
+ {b1} − {b2} − {b4}

)

b1

+
(

3
2
− {b1} − {b2} − {b3}

)

b2

+
(

1− {b2} − 1
2
{b3} − 1

2
{b4}

)

b3

+
(

1
2
− {b1} − {b3}

2
+ {b4}

2

)

b4.

E[0](b) = 1− 1
2
{b1} − 3

2
{b2} − {b3} − 1

2
{b4}

− 1
2
{b1}2 + 1

2
{b2}2 − 1

2
{b4}2 − { b4+b3

2
}2

+ {b1}{b2}+ {b1}{b4}+ {b2}{b3}
+ {b3}{ b4+b3

2
}+ {b4}{ b4+b3

2
}.

We see that E[2](b) is a linear combination of products of two
linear forms, E[1](b) is a linear combination of products of linear
forms with step-linear forms, while E[0](b) is a linear combination
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of products of at most two step-linear forms. Thus each of the
E[r](b) is of local degree 2.

(ii) We compute the intermediate quasi-polynomial

EL(µ, 1, τ2)(b) = EL
[2](b) + EL

[1](b) + EL
[0](b)

for the same chamber τ2, when L is the vertical line L = R(0, 1),
and again h = 1. Thus we compute the sum SL(p(b), 1) of
the lengths of vertical segments in the quadrilateral p(b). Then
EL

[2](b) = E[2](b) = vol(p(b)) is again the volume of p(b), and we
compute

EL
[1](b) = −1

2
b1 +

1
2
b2 +

1
2
b4 + {b1}b1 − {b1}b2 − {b1}b4,

EL
[0](b) =

1
2
{b1}+ 1

2
{b2 + b3} − { b3−b4

2
}

− 1
2
{b1}2 − 1

2
{b2 + b3}2 + { b3−b4

2
}2.

Again, we observe that the local degree of EL
[r](b) is indeed 2 for

r = 0, 1, 2.

Remark 2.30. In this theorem, the parameter b varies in RN . In
particular, the results of [13] on “vector dilated polytopes” follow easily
from this theorem.3 The article [13] was part of our motivation to
consider the case of a multidimensional real-valued parameter and not
just one parameter dilations.

Remark 2.31. When L = V , we are computing an integral over p(b).
It is clearly a polynomial function of b on any chamber. This is con-
sistent with the fact that QΨV

τ (µ)(RN) is just the constants.
Classically, in particular when computing the number of lattice points

(case L = {0}, h(x) = 1), the parameter b was restricted to ZN .
As we already observed, if qΛ∗ is contained in the lattice generated
by (µj, j ∈ B) for any B ∈ Bτ , then the coefficients of the Ehrhart
quasi-polynomial (2.11) are qZN -periodic functions on RN , therefore
the Ehrhart quasi-polynomial restricts to any coset { b0+ qn : n ∈ ZN }
as a true polynomial function of n ∈ ZN .

Remark 2.32 (Case of partition polytopes). The paper [9] deals with
Ehrhart quasi-polynomials for weighted sums and integrals over a parti-
tion polytope. Their variation is computed, when the parameter crosses
a wall between two chambers. Let us recall how a parametric polytope
p(µ, b) is associated to a partition polytope ppartition(Φ, λ). Let F be a
vector space of dimension N−d and let Φ = (φ1, . . . , φN) be a sequence

3Note that [13] states and proves results for rational vector dilations only.
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of elements of F . We assume that Φ generates a full-dimensional
pointed cone in F . For λ ∈ F , let

ppartition(Φ, λ) =
{

y = (yj) ∈ RN : yj ≥ 0,
∑N

j=1 yjφj = λ
}

.

This is a polytope contained in the affine subspace
{

y = (yj) ∈ RN :
∑N

j=1 yjφj = λ
}

. Define V :=
{

y = (yj) ∈ RN :
∑N

j=1 yjφj = 0
}

.

Let µj be the linear form on V defined by 〈µj, x〉 = −xj. For b ∈ RN ,

let λ =
∑N

j=1 bjφj. Then x 7→ x + b is a bijection between p(µ, b) and

ppartition(Φ, λ).

Remark 2.33 (Wall crossing). Finally, it would be interesting to study
the variation of the quasi-polynomials SL(p(b), h) when b cross the wall
of a chamber τ . The method of [9] could probably be adapted to the more
general case of intermediate weighted sums of a parametric polytope.

2.5.2. Specialization to other parameter domains. From the study of a
general parametric polytope, it is not difficult to derive results when
the multi-parameter b ∈ RN is itself a function of another parameter
t ∈ Rq, b = b(t1, . . . , tq). We restrict ourselves to the setting where b
is a (homogeneous) linear function of t, which we write as b(t) = T t,
where T ∈ RN×q is a matrix. This is sufficient for two popular settings,
which we explain in the following sections. In section 2.5.3, we will
consider the case of a fixed semi-rational polytope p dilated by a one-
dimensional real parameter t ≥ 0. In section 2.5.4, we will consider the
more general case of a Minkowski linear system t1p1 + · · ·+ tqpq.
To describe how the specialization yields the function t 7→ EL(µ, h, τ)(T t),

let us first describe the alcoves. Let T ∗ ∈ Rq×N be the adjoint (trans-
pose) matrix. The linear forms η ∈ ΨL

τ (µ) ⊂ QN defining the alcoves
of RN (see Theorem 2.26) give rise to linear forms on Rq,

〈T ∗η, t〉 = 〈η, T t〉 for t ∈ Rq. (2.14)

Thus we consider the alcoves ofRq defined by the finite set T ∗(ΨL
τ (µ)) ⊂

Rq. Note that, when T is not rational, T ∗(ΨL
τ (µ)) will no longer

be rational, in contrast to the development in subsection 2.4. The
function t 7→ EL(µ, h, τ)(T t) will therefore belong to the subalgebra

QPT ∗(ΨL
τ (µ))(Rq) of semi-quasi-polynomials. (When T is rational, this

is a subalgebra of quasi-polynomials.)
Using this notation, we can formulate a theorem analogous to Theorem 2.26.

We omit the statement.
In contrast to Theorem 2.26, we no longer know the precise local de-

gree of the semi-quasi-polynomial t 7→ EL(µ, h, τ)(T t). The “expected”
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Figure 7. SL(tp, 1) for the quadrilateral of Example
2.34, for L = {0} (black), L vertical (red), L = R2

(blue). On the left, t varies from 0 to 1, new lat-
tice points occur for t = 0, 1

5
, 1
3
, 2
5
, 3
5
, 2
3
, 4
5
, 1. On the

right, t varies from 1 to 2.4, new lattice points occur
for t = 6

5
, 4
3
, 7
5
, 8
5
, 5
3
, 2, 11

5
, 7
3
, 12

5
. For L vertical, SL(tp, 1) is

continuous, but its derivative has discontinuities.

degree is m+ d, but there may be cancellations of terms, as illustrated
by the example p = [−1, 1], h(x) = x given in the introduction.

2.5.3. Case of a dilated polytope. A first example appeared in the in-
troduction as Example 1.3, which already illustrated that in the case of
semi-rational polytopes p which are not rational, we may not get quasi-
polynomials of the dilation factor t but merely semi-quasi-polynomials.
Let us give a few more examples for the rational case.

Example 2.34 (Continuation of Examples 2.8, 2.10 and 2.15). Fix
b0 = (0, 0, 5, 3), so that p = p(b0) is the quadrilateral of Figure 4 with
vertices [0, 0], [0, 3], [1, 4], [5, 0]. We specialize the formula forEL(µ, 1, τ2)(b)
to the line b = tb0. We consider the cases L = {0}, L the vertical line,
and L = V .

(a) First, with L = V , we compute the volume. For t ≥ 0, SV (tp) =
23
2
t2. It is a polynomial function of t with rational coefficients.

(b) Next, with L = {0}, we count the lattice points of tp, for t ≥ 0.

S{0}(tp, 1) = 23
2
t2 + (13

2
− {3t} − 4{5t})t

− 1
2
{3t}2 − {4t}2 + {4t}{3t}+ {5t}{4t}

− {5t} − 1
2
{3t}+ 1.
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It takes only integral values, and is locally constant over some ra-
tional intervals. These facts are more apparent on the graph (Fig-
ure 7) than on the formula. When t is in Z, all terms {qt}, for
q ∈ Z, are equal to 0, and we obtain the usual Ehrhart polynomial
of p over Z (it is a polynomial as p has integral vertices)

23
2
t2 + 13

2
t + 1.

The value at t = 1 is 19, the number of integral points in p.
(c) When L is the vertical line, we add the lengths of the vertical

segments in tp, for t ≥ 0.

SL(tp, 1) = 23
2
t2 + 3

2
t+ 1

2
{5t}2 + {t}2 − {4t}2 + 1

2
{5t} − {t}.

This is a continuous function of t. Its value at t = 1 is 13.

Now we describe how this specialization works in general. Let L be
a rational subspace of V . We take a (semi-)rational polytope p = p(b0)
associated to a fixed real multi-parameter b0, and specialize the formula
for EL(µ, h, τ)(b), where b0 ∈ τ̄ , when b = tb0 for t ∈ R, t > 0. Using
the notation from subsubsection 2.5.2, we have the matrix T = (b0) ∈
RN×1. We then compute the finite set Ψ := T ∗(ΨL

τ (µ)) ⊂ R. It can
be described in a simpler way as follows. Denote by ΨL

p the union of

the sets ΨL
c ⊂ Λ∗∩L⊥, described in subsection 2.4, where c varies over

the cones of feasible directions at the vertices of p (they are rational
polyhedral cones).
Then Ψ is the finite set of real numbers 〈γ, s〉, where γ runs in ΨL

p ,
and s runs over the vertices of p. It describes the alcoves of R. Thus the
function t 7→ SL(tp, h) is a (semi-)quasi-polynomial, which coincides
with a polynomial function of t on intervals with possibly irrational
ends, as in Example 1.3. Its coefficient functions are bounded functions
of the variable t ∈ R. If p is rational, then Ψ is rational, and thus the
coefficient functions are periodic functions.
We summarize this discussion in the following result.

Theorem 2.35. Let p be a (semi-)rational polytope and h a polynomial
function of degree m on V . Let Ψ ⊂ R be the set of real numbers 〈γ, s〉,
where γ runs in ΨL

p and s runs over the vertices of p.

(i) There exists a (semi-)quasi-polynomial

EL(p, h)(t) =
d+m
∑

r=0

EL
r (p, h)(t) t

r,

such that SL(tp, h) = EL(p, h)(t) for all t ∈ R with t ≥ 0. It
belongs to QPΨ

[≤m+d](R).
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Figure 8. SL(tpI , 1) where pI is the quadrilateral with
irrational vertices of Example 2.36, for L = {0} (black),
L vertical (red), L = R2 (blue). On the left, t varies from
0 to 1. On the right, t varies from 1 to 2.

(ii) The coefficient functions EL
r (p, h)(t) are step-polynomials; they

belong to QΨ
[≤m+d−r](R).

(iii) Let p be rational and q ∈ N is such that qp has lattice ver-
tices. Then the coefficient functions EL

r (p, h)(t) are rational step-
polynomials on R; they are periodic functions with period q. Thus
EL(p, h)(t) is a quasi-polynomial.

One can also prove the theorem directly with a proof similar to that
of Theorem 2.26, based on Brion’s theorem for p, without embedding p

in a parametric family. This was done in [5] under the assumption that
p is rational.

Example 2.36 (continuation of Examples 2.8, 2.15). Consider now
the quadrilateral pI = p(bI) with bI = [0, 0, 3

√
2, 3]. Its four vertices

are [0, 0], [0, 3], [−3
2
+ 3

2

√
2, 3

2
+ 3

2

√
2], and [3

√
2, 0].

We specialize the formula which gives EL(µ, 1, τ2)(b) for b = tbI ,
when L = V , L is the vertical line, L = {0}, respectively.
(a) First, for L = V , EL(µ, 1, τ2)(tbI) is the volume given by

V (tpI) =
9
4

(

1 + 2
√
2
)

t2.

This is a polynomial function of t with real coefficients.
(b) When L is the vertical line, we add the lengths of the vertical

segments in tpI , for t ≥ 0. SL(tpI , 1) = EL
2 (t) t

2 + EL
1 (t) t + EL

0 (t)
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with coefficient functions

EL
2 (t) =

9
4

(

1 + 2
√
2
)

, EL
1 (t) =

3
2
,

EL
0 (t) = −1/2

{

3
√
2t
}2

+ 1
2

{

3
√
2t
}

−
{

−3
2
t+ 3

2

√
2t
}

+
{

−3
2
t+ 3

2

√
2t
}2
.

This is a semi-quasi-polynomial, but not a quasi-polynomial, be-
cause the coefficient function EL

0 (t) is not periodic but merely
bounded.

(c) Finally, we compute the number of integral points S{0}(tpI , 1) in
tpI , for t ≥ 0. We have S{0}(tpI , 1) = E2(t) t

2 + E1(t) t + E0(t),
where the coefficient functions Er(t) are step-polynomial functions
of t,

E2(t) =
9
4

(

1 + 2
√
2
)

,

E1(t) =
3
2
+ 3

2
{3 t} − 3

√
2

2
{3
√
2 t} − 3

2
{3
√
2 t} − 3

√
2

2
{3t}+ 3

√
2,

E0(t) = 1− 1/2 {3 t} − {3
√
2 t} − 1

2
{3 t}2 − {3

2
t+ 3

2

√
2 t}2

+ {3
2
t+ 3

2

√
2 t}{3 t}+ {3

√
2 t}{3

2
t + 3

2

√
2 t}.

Thus again S{0}(tpI , 1) is a semi-quasi-polynomial, but not a quasi-
polynomial. It takes only integral values, and is constant over
some intervals with end points of the form n

3
, n
3
√
2
, n
3(1+

√
2)

with n

an integer.

The graphs of these three semi-quasi-polynomials are displayed in Fig-
ure 8.

Let us discuss some qualitative properties of the (semi-)quasi-polyno-

mial function EL(p, h)(t) =
∑d+m

r=0 EL
r (p, h)(t) t

r, defined in Theorem
2.35. The coefficient functions EL

r (p, h)(t) are given by polynomial
formulae (with rational coefficients) of functions {rjt}, where some rj
may be irrational. In particular, EL

r (p, h)(t) is a bounded function
on R. (If the polytope p is rational, the coefficients rj are rationals,
and EL

r (p, h)(t) is a periodic function on R and thus EL(p, h)(t) is
an ordinary quasi-polynomial function on R.) The individual function
{rjt} is right-continuous if rj > 0, and coincides with the affine linear
function rjt − n on the semi-open interval [n/rj , (n + 1)/rj[. If rj <
0, {rjt} is left-continuous. It follows that there is a sequence 0 ≤
d1 < d2 < · · · < di < di+1 < · · · such that EL

r (p, h)(t) is given by a
polynomial formula on the open interval ]di, di+1[. At the points di,
the function EL

r (p, h)(t) may be left-continuous, right-continuous, or di
can be a point of discontinuity. In section 5.2, examples are given of
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functions EL(p, h)(t) having all types of discontinuity on a discrete set
of points (left continuity, right continuity, or discontinuous).
Note, however, that if 0 ∈ p (as in Examples 2.34 and 2.36), then

the function EL(p, h)(t) is right-continuous.

2.5.4. Case of Minkowski linear systems. Let p1, p2, . . . , pq be semi-
rational polytopes in V . Then it is well known that there exists a
parametric polytope p(b) defined by µj(x) ≤ bj for 1 ≤ j ≤ N , a
chamber τ ⊂ RN and values b1, b2, . . . , bq ∈ τ of the multi-parameter b,
such that, for all ti ≥ 0, the Minkowski sum t1p1 + t2p2 + · · ·+ tqpq is
the polytope p(t1b

1 + t2b
2 + · · ·+ tqb

q), see for instance [16].
Let us recall how to determine this parametric family. For simplicity,

we take the case of two polytopes p1, p2. Then the outer normals µj

and the values b1j , b
2
j are determined in the following way. Without

loss of generality, we can assume that p1 + p2 is full-dimensional. Let
(µ1, . . . , µN) be the list of outer normal vectors to the facets of p1+ p2.
Then, for each index j, we have b1j := max(〈µj, x〉, x ∈ p1) and b2j :=
max(〈µj, x〉, x ∈ p2). In other words, the facet f(p1 + p2, µj) where
〈µj, x〉 reaches its maximum on p1 + p2 is the Minkowski sum of the
face f(p1, µj) of p1 where 〈µj, x〉 reaches its maximum on p1 and the
analogous face f(p2, µj) of p2.
Therefore we obtain the following corollary of Theorem 2.26:

Theorem 2.37. Let p1, p2, . . . , pq be (semi-)rational polytopes in V ,
L ⊆ V a rational subspace and h(x) a weight on V . There exists
a (semi-)quasi-polynomial function E(t1, t2, . . . , tq) on Rq such that for
t1 ≥ 0, . . . , tq ≥ 0, the intermediate weighted sum on the polytope t1p1+
t2p2 + · · ·+ tqpq is given by

SL(t1p1 + t2p2 + · · ·+ tqpq, h) = E(t1, t2, . . . , tq).

Example 2.38. We consider the Minkowski linear system generated by
two triangles p1 = ((0, 0), (−1

2
, 1
2
), (−1

2
,−1

2
)) and p2 = ((0, 0), (−1,−1),

(1, 1)); see Figure 9. Then t1p1 + t2p2 is the hexagon p(µ, t1b
1 + t2b

2),
with

µ = (x1, x1 + x2,−x1 + x2,−x1,−x1 − x2, x1 − x2),

b1 = (0, 0, 1, 1
2
, 1, 0),

b2 = (1, 2, 0, 0, 0, 2).

Its vertices are [t2, t2], [−1
2
t1+t2,

1
2
t1+t2], [−1

2
t1,

1
2
t1], [−1

2
t1,−1

2
t1], [−1

2
t1+

t2,−1
2
t1 − t2], [t2,−t2].
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Figure 9. Minkowski linear system, Example 2.38.
Left, p1 + p2. Right,

11
3
p1 +

8
7
p2.

(i) The volume of t1p1 + t2p2 is

E[2](t1, t2) =
1
4
t21 + 2t1t2 + t22.

(ii) The number S(t1, t2) of lattice points in t1p1 + t2p2 is

S(t1, t2) = E[2](t1, t2) + E[1](t1, t2) + E[0](t1, t2)

where E[1](t1, t2) is of polynomial degree 1 and E[0](t1, t2) is of
polynomial degree 0, which are given by

E[1](t1, t2) = (1− { t1
2
} − {2t2})t1 + (2− 2{t1} − 2{t2})t2

and

E[0](t1, t2) = 1− {t2}2 − {2t2}2 + 2{t1}{ t1
2
}+ 2{ t1

2
+ t2}{t1}

− { t1
2
}2 − 2{ t1

2
+ t2}2 − {t1} − {2t2} − {t1}2

+ 2{2t2}{ t1
2
+ t2}+ 2{t2}{2t2}.

(iii) Similarly, if L is the vertical line, the sum of the lengths of vertical
segments is given by the quasi-polynomial function

SL(t1, t2) = E[2](t1, t2) + EL
[1](t1, t2) + EL

[0](t1, t2)

with

EL
[1](t1, t2) = (1

2
− { t1

2
})t1 + (1− 2{t2})t2,

EL
[0](t1, t2) = −{− t1

2
+ t2} − { t1

2
− t2}+ {t2}+ { t1

2
− t2}2

+ { t1
2
} − { t1

2
}2 − {t2}2 + {− t1

2
+ t2}2.
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Remark 2.39. The results in [13] were obtained by writing any “vector
dilated polytope” as a Minkowski linear system.4 In the present article,
we take the opposite route, starting with Brion’s theorem.

3. Patched sums and highest polynomial degree terms of

weighted Ehrhart quasi-polynomials

Let p(b) be our parametric polytope. Our next concern is to study
the highest polynomial degree terms of the weighted Ehrhart quasi-
polynomial

E(µ, h, τ)(b) = E{0}(µ, h, τ)(b) =
∑

x∈p(b)∩Λ
h(x)

where b varies in the chamber τ .
Following Barvinok [7], we introduce some particular linear combi-

nations of intermediate weighted sums on polytopes and the analogous
linear combinations of intermediate generating functions of a polyhe-
dron.

3.1. Patched generating function associated with a family of
slicing subspaces. Let L be a finite family of linear subspaces L ⊆ V
which is closed under sum. Consider the subset

⋃

L∈L L
⊥ of V ∗. As the

family {L⊥ : L ∈ L} is stable under intersection, there exists a unique
function ρ on L such that

[

⋃

L∈L
L⊥
]

=
∑

L∈L
ρ(L)[L⊥].

We call ρ the patching function on L. Let us recall its relationship
with the Möbius function of the poset L ([7], [4]). Let L̂ be the poset
obtained by adding a smallest element 0̂ to L. Denote by µ its Möbius
function.

Lemma 3.1. The patching function ρ on L satisfies

ρ(L) = −µ(0̂, L).

We consider the following linear combination of intermediate gener-
ating functions.

Definition 3.2. The Barvinok patched generating function of a semi-
rational polyhedron p ⊆ V (with respect to the family L) is

SL(p)(ξ) =
∑

L∈L
ρ(L)SL(p)(ξ).

4Again we note that their results are for the rational case only.
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Technically, we will use the shifted version, similar to Definition 3.2:

Definition 3.3.

ML(s, c)(ξ) = e−〈ξ,s〉SL(s+ c)(ξ) =
∑

L∈L
ρ(L)ML(s, c)(ξ).

We now define a subspace of the space Mℓ(V
∗) from Definition 2.1.

Definition 3.4. We introduce the notation M[≥q](V
∗) for the space of

functions φ in Mℓ(V
∗) such that φ[m](ξ) = 0 if m < q.

We now state the approximation theorem of [4] for generating func-
tions of cones.

Theorem 3.5 (Theorem 4.7 in [4]). Let c be a rational cone. Fix
k, 0 ≤ k ≤ d. Let Lk be a family of subspaces of V , closed under
sum, such that lin(f) ∈ Lk for every face f of codimension ≤ k of c.
Let ρ(L), L ∈ Lk, be the patching coefficients of Lk, let S

Lk(s + c)(ξ)
be the Barvinok patched generating function of Definition 3.2 and let
MLk(s, c)(ξ) be as in Definition 3.3. Then, for any s ∈ V ,

M(s, c)(ξ)−MLk(s, c)(ξ) ∈ M[≥−d+k+1](V
∗), (3.1)

S(s+ c)(ξ)− SLk(s+ c)(ξ) ∈ M[≥−d+k+1](V
∗). (3.2)

We show in the next section that these approximations of generating
functions of cones lead to computations of the highest polynomial de-
gree terms of weighted Ehrhart quasi-polynomials of parametric poly-
topes.

3.2. Highest polynomial degree terms. Recall the notations of
Theorem 2.26. Our key technical result is the following.

Theorem 3.6. Let p(b) ⊂ V be a parametric polytope. Fix k, 0 ≤ k ≤
d. Let h(x) = 〈ℓ,x〉m

m!
. Let τ be an admissible chamber for p(b).

For each B ∈ Bτ , let Lk,B be a family of subspaces which contains
the faces of cB of codimension ≤ k and is closed under sum. Then
for r ≥ d + m − k, the terms of polynomial degree r of the Ehrhart
quasi-polynomial E(µ, h, τ)(b) are given by

E[r](µ, h, τ)(b) =

(

∑

B∈Bτ

MLk,B(sB(b), cB)[m−r](ξ)
〈ξ, sB(b)〉r

r!

)

∣

∣

∣

∣

ξ=ℓ

.

(3.3)
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Proof. By Formula (2.13), the terms of polynomial degree r of the
Ehrhart quasi-polynomial E(µ, h, τ)(b) are given by

E[r](µ, h, τ)(b) =

(

∑

B∈Bτ

M(sB(b), cB)[m−r](ξ)
〈ξ, sB(b)〉r

r!

)

∣

∣

∣

∣

ξ=ℓ

.

By Theorem 3.5, for r ≥ d + m − k, i.e., m − r ≥ −d + k, we
have the equality of the homogeneous components of ξ-degree m − r,
M(sB(b), cB)[m−r](ξ) = MLk,B(sB(b), cB)[m−r](ξ). �

We have an analogous result for the dilation of a single polytope.

Proposition 3.7. Let p ⊂ V be a (semi-)rational polytope. Fix k,

0 ≤ k ≤ d. Let h(x) = 〈ℓ,x〉m
m!

. For each vertex s of p, let cs be the
cone of feasible directions of p at s. For each s, let Lk,s be a family
of subspaces which contains the faces of cs of codimension ≤ k and is
closed under sum. Then for r ≥ d + m − k, the term of polynomial
degree r of the Ehrhart (semi-)quasi-polynomial E(p, h)(t) is given by

E[r](p, h)(t) =

(

∑

s

MLk,s(ts, cs)[m−r](ξ)
〈ξ, s〉r
r!

)

∣

∣

∣

∣

ξ=ℓ

tr. (3.4)

In the case of a single polytope p, there are two canonical families
Lk,s associated with a vertex s of p. The first one, Lcone-by-cone

k,s , is the
smallest family which contains the subspaces parallel to the faces of p
through s, and which is closed under sum (this condition is automatic
if p is simple). This family depends only of the cone cs. The second
family, LBarvinok

k , is the smallest family which contains the subspaces
parallel to all the faces of p and which is closed under sum. The second
family is the one which was originally used by Barvinok in [7]. It
depends of the polytope p and is the same family at each vertex s
of p. We will return to these two choices in Section 5 and associate
to each of these choices a canonical quasi-polynomial function of the
multi-parameter b obtaining our three quasi-polynomials, as promised
by the title of our article.
We first give more details on patching functions in two simple cases.

3.3. The patching function of a simplicial cone. Let c be a sim-
plicial cone with edge generators v1, . . . , vd. Let us denote here by Lk(c)
the family of subspaces lin(f) for faces of codimension ≤ k. This family
is closed under sum. We computed the patching function of Lk(c) in
[3]. Let us recall the result.

Definition 3.8. Let J d
≥(d−k) be the set of subsets I ⊆ {1, . . . , d} with

|I| ≥ d− k.
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Recall that we denote by LI the linear space spanned by the vectors
vi, i ∈ I. Let d = dimV . Then I 7→ LI is an isomorphism of posets
between J d

≥(d−k) and Lk(c). We denote by ρd,k the patching function

on Lk(c).
5

Proposition 3.9 ([3, Proposition 29]).

ρd,k(LI) = (−1)|I|−d+k

( |I| − 1

d− k − 1

)

(3.5)

where
(

a
b

)

= a!
b!(a−b)!

is the binomial coefficient.

3.4. The patching function of a simplex. Let p be a d-dimensional
simplex with vertices s1, . . . , sd+1. We fix 0 ≤ k ≤ d. The faces of p
of dimension ≥ d − k are labeled by subsets I of {1, . . . , d + 1} of
cardinality |I| ≥ d − k + 1, the face fI being the affine span of the
vertices si, for i ∈ I. Let us denote the corresponding linear subspace
lin(fI) by LI . Thus LI is the linear span of vectors si−sj with i, j ∈ I.
We consider only the case k ≤ d−1. The family LI is not closed under
sum, in general. If I1 ∩ I2 6= ∅, we clearly have

LI1 + LI2 = LI1∪I2 .

On the contrary, if I1 ∩ I2 = ∅, then the sum LI1 ⊕ LI2 is direct and
is not of the form lin(f). Therefore, to describe the family LBarvinok

k for
the simplex, we need to consider “subpartitions” I = {I1, . . . , Im} of
{1, . . . , d+ 1}, meaning that I1, . . . , Im are pairwise disjoint subsets of
{1, . . . , d+ 1}. The corresponding subspace is

LI = LI1 ⊕ · · · ⊕ LIm ⊆ V. (3.6)

Definition 3.10. We denote by ΠN,n the poset of all the subpartitions
I = {I1, . . . , Im} of {1, . . . , N}, with m ≥ 1 and |Ij| ≥ n, ordered by
refinement and set inclusion.6 (Its least element is the empty subpar-
tition, 0̂ = ∅.)
Let N = d + 1, n = d − k + 1. Then the map I 7→ L(I) is a poset

isomorphism of ΠN,n with the poset LBarvinok
k associated with the faces

of codimension ≤ k of the d-dimensional simplex p.
We denote by σd,k(I) the patching function on LBarvinok

k . By Lemma

3.1, it is the opposite of the Möbius function µ(0̂, I) of the poset ΠN,n.

5In [3], it appears under the name λMöbius(I).
6The poset can also be identified with the subposet of those partitions of

{1, . . . , N} that have no block sizes in 2, 3, . . . , n − 1. (The singleton blocks rep-
resent the elements of {1, . . . , N} not in any of the Ij .) In this form, the poset
appears under the notation ΠN,n in a paper by A. Björner and L. Lovász [10]; we
adopt the same notation.
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Example 3.11. The patching function on LBarvinok
2 ≃ ΠN,n, associated

with the 3-dimensional simplex (tetrahedron) and its faces of codimen-
sion ≤ 2. The six edges correspond to {{1, 2}}, {{1, 3}}, . . ., the four
facets to {{1, 2, 3}}, {{1, 2, 4}}, . . ., the simplex itself to {{1, 2, 3, 4}},
and the three planes spanned by the directions of two opposite edges to
{{1, 2}, {3, 4}}, {{1, 3}, {2, 4}}, {{2, 3}, {1, 4}}. The Möbius function
of ΠN,n is easy to compute directly. We obtain

σ3,2({{i, j}}) = 1

σ3,2({{i, j, k}}) = −2

σ3,2{{1, 2, 3, 4}}) = 6

σ3,2({{i, j}, {k, l}}) = −1

It turns out that the Möbius function µ(0̂, I) of the poset ΠN,n has
been computed by A. Björner and L. Lovász in a different context [10,
section 4]. Their result is the following.

Proposition 3.12. Denote by µN,n(I) the Möbius function µ(0̂, I) of
the poset ΠN,n. Then,

(i) µN,n(I1, . . . , Ir) depends only on the block-sizes n1 = |I1|, . . . , nr =
|Ir|.
Let us write µN,n(n1, . . . , nr) for µN,n(I1, . . . , Ir).

(ii) µN,m(n1, . . . , nr) = µN,m(n1) . . . µN,m(nr).
(iii) µN,n(m) = µm,n(m), for n ≤ m ≤ N .
(iv) Let µN(n) = µN,n(N) if N ≥ n, µ1(n) = 1 for every n ≥ 1 and

µN(n) = 0 for 2 ≤ N ≤ n− 1. Consider the generating series

Fn(z) =

∞
∑

N=1

µN(n)
zN

N !
.

Then

eFn(z) =
n−1
∑

N=0

zN

N !
.

Applying Lemma 3.1, we deduce the following computation rules for
the patching function σd,k(I).

Proposition 3.13.

(i) σd,k(I1, . . . , Ir) depends only on the block-sizes n1 = |I1|, . . . , nr =
|Ir|.
Let us write σd,k(n1, . . . , nr) for σd,k(I1, . . . , Ir).

(ii) σd,k(n1, . . . , nr) = (−1)r−1σd,k(n1) . . . σd,k(nr).
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(iii) For d − k ≤ m ≤ d + 1,
σd,k(m)

m!
is the coefficient of degree m of

the power series

− ln

d−k−1
∑

p=0

zp

p!
.

4. The cone-by-cone patched generating function

Let p ⊂ V be a polytope. Fix k, 0 ≤ k ≤ d, where d again is the
dimension of p.
If Lk is a family of subspaces which is closed under sum, then it

follows from Brion’s theorem that

SLk(p)(ξ) =
∑

s∈V(p)

SLk(s + cs)(ξ).

In particular, the sum
∑

s∈V(p) S
Lk(s+ cs)(ξ) is analytic, although each

s-term is singular at ξ = 0. The singularities cancel out when we sum
over the vertices.
In contrast, if we take a different family Lk,s for each vertex s, the

sum over vertices
∑

s∈V(p) S
Lk,s(s+ cs)(ξ) need not be analytic.

However, when p is a simple polytope (i.e., its cones at vertices cs are
simplicial), and Lk,s is chosen as the family of subspaces parallel to the
faces of cs which are of codimension ≤ k, we will show that this sum is
actually holomorphic. We will deduce this fact from the computation
in [4] of the residues of the generating function of a shifted cone.
Let us give a name and a notation for this sum.

Definition 4.1. Let p be a simple polytope. The cone-by-cone patched
generating function of p is

Ak(p)(ξ) =
∑

s∈V(p)

SLk,s(s+ cs)(ξ)

where, for each vertex s of p, Lk,s is the family of subspaces parallel to
the faces of cs which are of codimension ≤ k.7

Proposition 4.2. Let p ⊂ V be a simple polytope. Then Ak(p)(ξ) is
analytic near ξ = 0.

Proof. Let (va) be a set of pairwise distinct generators of all the edges
of p. By Proposition 3.4 in [4], SL(s+ cs) has simple hyperplane poles
near ξ = 0, given by the edges va of the cone at vertex s. It follows
that the product

∏

a〈ξ, va〉Ak(p)(ξ) is analytic. Therefore it is enough

7This function has appeared in [3], using the notation A≥d−k(p)(ξ), where d is
the dimension of p.



THREE EHRHART QUASI-POLYNOMIALS 41

to show that for each edge va, the corresponding residue vanishes. In
other words, we want to show that

(

〈ξ, va〉Ak(p)(ξ)
)
∣

∣

v⊥a
= 0 (4.1)

Thus, we need only to compute the residues for those vertices s where
v = va is an edge of cs. Let p be the projection V → V/Rv. Let s and
s′ be adjacent vertices of p such that s′−s ∈ Rv. If we take v to be the
edge generator for the cone cs, then the edge generator for the other
cone cs′ is −v. Moreover, the projected cones p(s + cs) and p(s′ + cs′)
are both equal to the tangent cone at the vertex p(s) of the projected
polytope.
Recall that we denote by J d

≥d0
the set of subsets I ⊆ {1, . . . , d} of

cardinality |I| ≥ d0. For a given vertex s of p, let v1, . . . , vd be primitive
edge generators at the vertex s. For I ∈ J d

≥d0
, the subspace generated

by vi for i ∈ I is denoted by Ls
I . Then the Barvinok patched generating

function for the cone s+cs, with respect to the codimension k = d−d0,
is

SLk,s(s+ cs)(ξ) =
∑

p≥d0

(−1)p−d0

(

p− 1

d0 − 1

)

∑

I,|I|=p

SLs
I (s+ cs)(ξ).

We can label the edges at s and s′ in such a way that the projections
p(Ls

I) and p(Ls′

I ) coincide for all I. Then by Proposition 3.4 in [4], we
conclude that the residues of SLk,s(s + cs)(ξ) and SLk,s′ (s′ + cs′)(ξ) at
v⊥ cancel out. �

Remark 4.3 (intermediate Todd classes). Let us outline an explana-
tion of the analyticity of Ak(p)(ξ) based on intermediate Todd classes.
We will not use this remark in the rest of this article.
When p is a simple lattice polytope, we can relate the function Ak(p)(ξ)

to some equivariant cohomology classes of the associated toric variety.
For simplicity, let us consider a Delzant polytope p. Let G be the torus
with Lie algebra g = V ∗ and weight lattice Λ ⊂ g∗ = V .
A smooth toric variety M and G-equivariant line bundle L on M

are associated with p. Let cL(ξ) be the G-equivariant Chern character
of L and let ToddM(ξ) be the G-equivariant Todd class of M . The
Riemann–Roch theorem relates the set of lattice points of p with the
integral over M of the product of these two classes:

S(p)(ξ) =

∫

M

ecL(ξ)ToddM(ξ). (4.2)
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Brion’s formula can be understood as the localization formula applied
to this integral. For a generic element ξ ∈ g, the vertices of p corre-
spond to the fixed points in M under the one-parameter group exp(tξ)
and the contribution of the fixed point corresponding to the vertex s is
precisely S(s+ cs)(ξ).
Now, let c1, . . . , cd be the equivariant Chern classes of the tangent

bundle of M , so that ToddM =
∏d

j=1
cj

1−e−cj
. Fix 0 ≤ k ≤ d and let

d0 = d− k.
Let us introduce the equivariant intermediate Todd class

ToddM
k =

∑

p≥d0

(−1)p−d0

(

p− 1

d0 − 1

)

∑

I,|I|=p

∏

j∈I

cj
1− e−cj

. (4.3)

We recover the cone-by-cone patched generating function when we re-
place Todd with Toddk in (4.2) and apply the localization formula:
∫

M

ecL(ξ)ToddM
k (ξ) =

∑

s∈V(p)

∑

p≥d0

(−1)p−d0

(

p− 1

d0 − 1

)

∑

I,|I|=p

SLI (s+ cs)(ξ). (4.4)

Now the integral on the left-hand side of (4.4) depends on ξ analytically.
However, we do not have any geometric interpretation of the quantity

computed by the left hand side of (4.4).

5. Three Ehrhart quasi-polynomials

5.1. Case of a parametric polytope. Let p(b) ⊂ V be a parametric
polytope, defined by µ : V → RN , and let τ ⊂ RN be an admissi-
ble µ-chamber. Let h(x) be a weight of degree m on V . We fix a
codimension k. Associated with these data, we have three canonical
weighted Ehrhart quasi-polynomials on RN which have the same terms
of polynomial degree ≥ d+m− k.
The first one, E{0}(µ, h, τ)(b) = E(µ, h, τ)(b), does not depend on k.

It is equal, for b ∈ τ , to the ordinary weighted sum S(p(b), h). This is
the quantity that we want to study.
The second one is associated with the full family of slicing subspaces

LBarvinok
k .

Definition 5.1. Ek,Barvinok(µ, h, τ)(b) is the quasi-polynomial such that

Ek,Barvinok(µ, h, τ)(b) = SLBarvinok

k (p(b), h) for b ∈ τ . (5.1)

Our third quasi-polynomial owes its existence to the analyticity of
the cone-by-cone patched generating function Ak(p(b))(ξ) of Definition
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4.1 for simple polytopes, established in Proposition 4.2. Recall that
p(b) is simple when b lies in an open chamber.

Proposition 5.2. Let ℓ ∈ V ∗, m ≥ 0, and h(x) = 〈ℓ,x〉m
m!

. Fix a
codimension k and a chamber τ . Then there exists a unique quasi-
polynomial Ek,cone-by-cone(µ, h, τ)(b) on RN such that

Ek,cone-by-cone
(

µ, h, τ
)

(b) = Ak(p(b))[m](ℓ) for b ∈ τ , (5.2)

where Ak(p)[m](ξ) denotes the homogeneous component of degree m with
respect to ξ.

We extend the definition of Ek,cone-by-cone
(

µ, h, τ
)

(b) to arbitrary poly-
nomial functions h(x) on V by decomposition as a sum of powers of
linear forms. The piecewise quasi-polynomial Sk,cone-by-cone(p(b), h)
from the introduction is given on the closure τ of each chamber by
Ek,cone-by-cone(µ, h, τ)(b).

Proof. We need only prove that b 7→ Ak(p(b))[m](ξ) is given by a quasi-
polynomial function of b (with values in the space of polynomials in ξ),
when b varies in τ . The proof is similar to the proof of Theorem
2.26. �

The next theorem follows immediately from Proposition 3.7.

Theorem 5.3. Let p(b) ⊂ V be a parametric polytope, defined by
µ : V → RN , and let τ ⊂ RN be a µ-chamber. Fix a codimension k.
Let h(x) be a polynomial function on V of degree m.
Then the three quasi-polynomials E(µ, h, τ)(b), Ek,Barvinok(µ, h, τ)(b)

and Ek,cone-by-cone(µ, h, τ)(b) have the same terms of polynomial degree
≥ d+m− k.

5.2. Case of a dilated polytope. Polynomial time algorithms.
Examples. In this section, we consider just one polytope p ⊂ V and
the dilated polytope tp for t real > 0. We fix a weight h(x) on V and
a codimension k. If p is simple, then we have again three canonical
quasi-polynomials of the parameter t associated with p and h(x), all
three of polynomial degree d+m. If p is not simple, only the first two
quasi-polynomials are defined.8 The first quasi-polynomial is defined
by

E(p, h)(t) = E{0}(p, h)(t) = S(tp, h) for t > 0.

8 Of course, we could define Ek,cone-by-cone(p, h) as well for non-simple polytopes
by taking limits. However, it would no longer be canonical, as it would depend on
the path. It is an open question whether a canonical definition is possible, which
also should have a toric interpretation (Remark 4.3).
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The second quasi-polynomial is defined by

Ek,Barvinok(p, h)(t) = SLBarvinok

k (tp, h) for t > 0.

If p is simple, the third quasi-polynomial is defined as follows. If h(x) =
〈ℓ,x〉m
m!

, then

Ek,cone-by-cone(p, h)(t) = Ak(tp)[m](ℓ) for t > 0.

This definition is again extended to arbitrary polynomial functions h(x)
on V by decomposition as a sum of powers of linear forms.
Those three quasi-polynomials have the same terms of polynomial

degree ≥ d+m− k.
Furthermore, if p is a rational simple polytope, and if h is a power

of a rational linear form, Ek,Barvinok(p, h)(t) and Ek,cone-by-cone(p, h)(t)
can be computed in polynomial time when the codimension k is fixed.
Similar results on polynomial complexity hold for a more general weight
h(x). One can assume that the weight is given as a polynomial in a
fixed number R of linear forms, h(x) = f(〈ℓ1, x〉, . . . , 〈ℓR, x〉), or has a
fixed degree D.
For Ek,cone-by-cone(p, 〈ℓ, x〉M)(t), this result is obtained in [3]. In this

article, we used the step-functions n 7→ {ζn}q which are defined as
ζn mod q for ζ, q, n ∈ Z. However, as noted in [5], the same proof9

gives the result for real parameters using t 7→ q{ ζ
q
t}.

For the case of Ek,Barvinok(p, 〈ℓ, x〉M)(t), we apply directly Theorem
28 in [5] where we considered just one intermediate sum SL(tp, h). The
crucial point is that the codimension of L is bounded by k, which is
fixed. Here, we need also to compute the patching function. This can
be done by computing recursively the Möbius function of the poset
LBarvinok

k .
The algorithm for computing Ek,cone-by-cone(p, 〈ℓ, x〉M)(t) is simpler

than the original algorithm given by Barvinok in [7], where the sub-
spaces L in the Barvinok family do not necessarily correspond to faces
of p.

We have implemented these algorithms in the case where p is a sim-
plex, in Maple. The Maple programs are distributed as part of LattE
integrale, version 1.7.2 [1], and also separately via the LattE website.10

We give below some examples computed with our Maple programs.
In the case of a lattice simplex, when restricted to t ∈ N, the three

quasi-polynomials are usual polynomials in t. Here is an example.

9Of course, we can no longer reduce ζ modulo q in the case of real parameters.
10The most current versions are available at

https://www.math.ucdavis.edu/~latte/software/packages/maple/.

https://www.math.ucdavis.edu/~latte/software/packages/maple/
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Table 1. The polynomials Ek,Barvinok(p, 1)(t) and
Ek,cone-by-cone(p, 1)(t) for integer dilations of the lattice
simplex of Example 5.4

k Ek,cone-by-cone(p, 1)(t) Ek,Barvinok(p, 1)(t)

0 3
4
t4 3

4
t4

1 3
4
t4 + 2 t3 + 7

24
t2 − 5

5184
3
4
t4 + 2t3 + 7

24
t2

2 3
4
t4 + 2 t3 + 15

4
t2 + 15

8
t+ 67

432
3
4
t4 + 2t3 + 15

4
t2 + 15

8
t

3 3
4
t4 + 2 t3 + 15

4
t2 + 7

2
t + 389

432
3
4
t4 + 2t3 + 15

4
t2 + 7

2
t

4 3
4
t4 + 2 t3 + 15

4
t2 + 7

2
t+ 1 3

4
t4 + 2 t3 + 15

4
t2 + 7

2
t + 1

Example 5.4. Let p be the 4-dimensional simplex with vertices

[4, 6, 4, 3], [5, 7, 9, 1], [5, 7, 3, 7], [6, 8, 3, 9], [2, 1, 8, 0].

We use the weight function h = 1. Table 1 shows the quasi-polynomials
Ek,Barvinok(p, 1)(t) and Ek,cone-by-cone(p, 1)(t), for maximal codimension
k, 0 ≤ k ≤ 4. For k = 0, both give the volume of the dilated simplex,
for k = 4, both give the exact number of points.

Next, an example of a rational triangle dilated by a real parameter t.

Example 5.5. Let p be the triangle with vertices [1, 1], [1, 2], [2, 2].
We use the weight function h(x) = 1, so we approximate the number
of lattice points in the triangle dilated by a real number t. We list
below the cone-by-cone and the full-Barvinok quasi-polynomials, for
codimension k, 0 ≤ k ≤ 2. For k = 0, both Ek,cone-by-cone(p, 1)(t) and

Ek,Barvinok(p, 1)(t) give the area of the dilated triangle, t2

2
. For k = 1,

Ek,cone-by-cone(p, 1)(t) = t2

2
+
(

3
2
− {−t} − {2t}

)

t

+ 1
4
− {−t}

2
− {2t}

2
+ {−t}2

2
+ {2t}2

2
,

Ek,Barvinok(p, 1)(t) = t2

2
+
(

3
2
− {−t} − {2t}

)

t− {t}2
2

+ {t}
2
.

For k = 2, both give the exact number of points,

t2

2
+
(

3
2
− {−t} − {2t}

)

t

+ 1
2
{2t}2 + 1

2
{−t}2 + {2t}{−t} − 3

2
{−t} − 3

2
{2t}+ 1. (5.3)

For instance, for t = 1
2
, t = 1

6
π = 0.5235987758 . . . , or t = 1

2
3

√

17/10 =
0.5967415960 . . . , the last expression gives 1, which is indeed the num-
ber of lattice points in the triangle with vertices [1

2
, 1
2
], [1

2
, 1], and [1, 1].
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Figure 10. In blue, the triangle with vertices [1, 1],
[1, 2], and [2, 2], dilated by t = 1 + ǫ and t = 1 − ǫ. In
red, the same triangle, dilated by t = 1

2
and t = 1

2
± ǫ.

On the other hand, for t = 1, Formula (5.3) gives 3, which is indeed
the number of lattice points in the triangle with vertices [1, 1], [1, 2],
and [2, 2], while for t = 1± ǫ, with any small ǫ, Formula (5.3) gives 1.
We leave it as an exercise to the reader to understand the mystery;
Figure 10 may help. Figure 11 displays the graphs of the above quasi-
polynomials.

In higher dimensions, the quasi-polynomials of a real variable t which
arise are too long to display. We will only show some graphs.

Example 5.6. Figures 12 and 13 display the graphs of the quasi-
polynomialsEk,cone-by-cone(p, 1)(t) andEk,Barvinok(p, 1)(t) for the 3-dimen-
sional simplex with vertices

[0, 1, 1], [4, 2, 1], [1, 1, 2], [1, 2, 4],

for t ∈ [1.3, 3.9]. For k = 0, both quasi-polynomials give the volume
t3 of the dilated simplex; for k = 3, they are both equal to S(tp, 1)
which gives the number of integral points. In this example, we see that
the function t 7→ S(tp, 1) has discontinuities on any side (left, right or
both).
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Figure 11. Graphs of the quasi-polynomials
Ek,cone-by-cone(p, 1)(t) (left) and Ek,Barvinok(p, 1)(t) (right)
for the triangle p with vertices [1, 1], [1, 2], [2, 2] and k = 0
(green), k = 1 (red), and k = 2 (black).
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Figure 12. Ek,cone-by-cone(p, 1)(t) for the 3-dimensional
simplex with vertices [0, 1, 1], [4, 2, 1], [1, 1, 2], and [1, 2, 4]
from Example 5.6, for t ∈ [1.3, 3.9] and k = 0 (green),
k = 1 (blue), k = 2 (red), k = 3 (black).
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Figure 13. Ek,Barvinok(p, 1)(t) for the same simplex as
in Figure 12
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Acknowledgments

This article is part of a research project which was made possible by
several meetings of the authors, at the Centro di Ricerca Matematica
Ennio De Giorgi of the Scuola Normale Superiore, Pisa in 2009, in a
SQuaRE program at the American Institute of Mathematics, Palo Alto,
in July 2009, September 2010, and February 2012, in the Research
in Pairs program at Mathematisches Forschungsinstitut Oberwolfach
in March/April 2010, and at the Institute for Mathematical Sciences
(IMS) of the National University of Singapore in November/December
2013. The support of all four institutions is gratefully acknowledged.
V. Baldoni was partially supported by a PRIN2009 grant. J. De Loera
was partially supported by grant DMS-0914107 of the National Science
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